Generalized Barankin-Type Lower Bounds for Misspecified Models

MOUHAMADOU LAMINE DIONG, ERIC CHAUMETTE AND FRANÇOIS VINCENT

Université de Toulouse/ISAE-Supaéro

(2)

Abstract

When the assumed probability distribution of the observations differs from the true distribution, the model is said to be misspecified. The key results on maximum-likelihood estimation of misspecified models have been introduced in the limit of large sample support and depend on a parameters vector solution of a computationally expensive non-linear optimization problem. As a possible strategy to circumvent these limitations, we extend the approach lately proposed by *Fritsche et al.* It is shown that the lower bound derived in *Fritsche et al* is a representative of a family of lower bounds deriving from a misspecified unbiasedness constraint leading to generalized Barankin-type lower bounds. For future use, we derive the standard representative of the "Small Errors" and 'Large Errors" bounds, namely the generalized CRB and the generalized McAulay-Seidman bound.

Background on MLEs under misspecification

• All "computable" LBs for *correctly specified models* derive from sets of discrete or integral linear transform of (6) and are obtained from lemma: The problem of the minimization of $\|\mathbf{u}\|^2$ under the K linear constraints $\langle \mathbf{u} \mid \mathbf{c}_k \rangle = v_k$, $k \in [1, K]$, then has the solution: $\min\left\{\|\mathbf{u}\|^2\right\} = \mathbf{v}^T \mathbf{R}^{-1} \mathbf{v}, \quad \mathbf{R}_{n,k} = \langle \mathbf{c}_k \mid \mathbf{c}_n \rangle.$ (8)

Generalized Barankin-Type Lower Bounds for Misspecified Models • If $f_{\theta}(\overline{\mathbf{x}})$ is the true p.d.f., the MLE $\hat{\theta}_{ML}^0$ of θ^0 is, in the limit of large sample support, uniformly unbiased with respect to $f_{\theta}(\overline{\mathbf{x}})$:

$$\forall \theta \in \Theta : E_{\theta} \left[\widehat{\theta_{ML}^0} \left(\overline{\mathbf{x}} \right) \right] = \theta.$$
(9)

• If $f_{\theta}(\overline{\mathbf{x}})$ is **not** the true p.d.f. of the observations, then (9) is no longer the uniform unbiasedness constraint (6) but a given linear constraint:

- Maximum likelihood estimators (MLEs) are, under reasonably general conditions on the probabilistic observation model, in the limit of large sample support, Gaussian distributed and consistent, *if the probability distribution function* (p.d.f.) which determines the behavior of the observations is assumed to be "correctly specified".
- ctually, in many (if not most) circumstances, a certain amount of mismatch between the true p.d.f. of the observations denoted $p(\boldsymbol{x}_t)$, $\{\boldsymbol{x}_t\}_{t=1}^T$ i.i.d., and the probability model $f_{\theta}(\boldsymbol{x}_t) \triangleq f(\boldsymbol{x}_t|\boldsymbol{\theta})$ that we assume is present.
- As a consequence, it is natural to investigate what happens to the properties of MLEs if the probability model is misspecified, i.e. not correctly specified [Huber, Akaike, White, Vuong].

• Under mild regularity conditions, the misspecified MLE (MMLE) defined as:

 $\widehat{\boldsymbol{\theta}}\left(\overline{\boldsymbol{x}}\right) = \arg \max \left\{ f_{\boldsymbol{\theta}}\left(\overline{\boldsymbol{x}}\right) = f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{1}\right) \dots f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{T}\right) \right\}, \ \overline{\boldsymbol{x}}^{T} = \left(\boldsymbol{x}_{1}^{T}, \dots, \boldsymbol{x}_{T}^{T}\right), \quad (1)$

is, in the limit of large sample support $(T \to \infty)$, a strongly consistent estimator for the parameters vector which minimizes the KLIC:

 $\widehat{\boldsymbol{\theta}}\left(\overline{\boldsymbol{x}}\right) \stackrel{a.s.}{\rightarrow} \boldsymbol{\theta}_{f} = \arg\min_{\boldsymbol{\theta}} \left\{ E_{p}\left[\ln\left(p\left(\boldsymbol{x}_{t}\right)\right) - \ln\left(f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{t}\right)\right)\right] \right\},\$

 $p(\overline{\boldsymbol{x}}) = p(\boldsymbol{x}_1) \dots p(\boldsymbol{x}_T), \ E_p[\boldsymbol{g}(\overline{\boldsymbol{x}})] = \int \boldsymbol{g}(\overline{\boldsymbol{x}}) p(\overline{\boldsymbol{x}}) d\overline{\boldsymbol{x}}.$ • Moreover $\widehat{\boldsymbol{\theta}}(\overline{\boldsymbol{x}})$ is asymptotically normal: $\widehat{\boldsymbol{\theta}}(\overline{\boldsymbol{x}}) \stackrel{A}{\sim} \mathcal{N}(\boldsymbol{\theta}_f, \boldsymbol{C}_{\widehat{\boldsymbol{\theta}}})$, $\int \hat{\theta}_{ML}^{0}(\overline{\mathbf{x}}) f_{\theta}(\overline{\mathbf{x}}) d\overline{\mathbf{x}} = \theta, \quad \int f_{\theta}(\overline{\mathbf{x}}) d\overline{\mathbf{x}} = 1.$ (10)

As $f_{\theta}(\overline{\mathbf{x}})$ is a p.d.f., it makes sense to regard (9-10) as a misspecification of the uniform unbiasedness property.

• Then, any estimator $\hat{\theta}^0$ verifying (9) satisfies,

 $\forall \theta \in \Theta : E_p \left[\left(\widehat{\theta^0} \left(\overline{\mathbf{x}} \right) - \theta^0 \right) \omega_p \left(\overline{\mathbf{x}} ; \theta \right) \right] = \theta - \theta^0, \ \omega_p \left(\overline{\mathbf{x}} ; \theta \right) = \frac{f_\theta \left(\mathbf{x} \right)}{n \left(\overline{\mathbf{x}} \right)}, \quad (11)$ and (7) becomes:

$$\min \left\{ MSE_p \left[\widehat{\theta^0} \right] = \left\| \widehat{\theta^0} \left(\overline{\mathbf{x}} \right) - \theta^0 \right\|_p^2 \right\} \text{ under}$$
$$\forall \theta \in \Theta : \left\langle \widehat{\theta^0} \left(\overline{\mathbf{x}} \right) - \theta^0 \mid \omega_p \left(\overline{\mathbf{x}}; \theta \right) \right\rangle_n = \theta - \theta^0, \text{ (12)}$$

where $\langle u(\overline{\mathbf{x}}) | v(\overline{\mathbf{x}}) \rangle_p = E_p[u(\overline{\mathbf{x}}) v(\overline{\mathbf{x}})] \Rightarrow$ generalization of the BB under **unbiasedness misspecification** and an unknown true parametric p.d.f. $p(\overline{\mathbf{x}})$.

Application to Linear Gaussian Models

• The following true linear Gaussian model is considered: $\mathbf{x} = \mathbf{d}_p \theta + \mathbf{n}$, $\mathbf{n} \sim \mathcal{N}(\mathbf{0}, \mathbf{C}_p)$, where $\mathbf{d}_p \in \mathbb{R}^M$ and $\mathbf{C}_p \in \mathbb{R}^{M \times M}$ are supposed to be known. For any selected value θ^0 of the parameter θ , the true p.d.f. of the observation is then $p(\mathbf{x}) \triangleq p_{\theta^0}(\mathbf{x}) \triangleq p_{\mathcal{N}}(\mathbf{x}|\mathbf{d}_p\theta^0, \mathbf{C}_p).$

ullet Even if the linear structure and the noise p.d.f. are known, generally \mathbf{d}_p and \mathbf{C}_p are not accurately known and are replaced by assumed values \mathbf{d}_f and \mathbf{C}_f , leading to the following assumed p.d.f. $f_{\theta}(\mathbf{x}) \triangleq p_{\mathcal{N}}(\mathbf{x}|\mathbf{d}_{f}\theta, \mathbf{C}_{f})$.

 $C_{\widehat{\theta}} \stackrel{a.s.}{\to} C_{HS}(\theta_f)$, where the asymptotic covariance matrix $C_{HS}(\theta_f)$, the so-called **Huber's "sandwich covariance"**, is given by:

$$T\boldsymbol{C}_{HS}(\boldsymbol{\theta}_{f}) = E_{p} \left[\frac{\partial^{2} \ln f(\boldsymbol{x}_{t} | \boldsymbol{\theta}_{f})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{T}} \right]^{-1} E_{p} \left[\frac{\partial \ln f(\boldsymbol{x}_{t} | \boldsymbol{\theta}_{f})}{\partial \boldsymbol{\theta}} \frac{\partial \ln f(\boldsymbol{x}_{t} | \boldsymbol{\theta}_{f})}{\partial \boldsymbol{\theta}^{T}} \right] \times E_{p} \left[\frac{\partial^{2} \ln f(\boldsymbol{x}_{t} | \boldsymbol{\theta}_{f})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{T}} \right]^{-1}.$$
(3)

A covariance matrix is the tightest LB on itself since it satisfies the covariance *inequality*. Thus $\forall \boldsymbol{\eta} (\overline{\boldsymbol{x}})$:

$$\boldsymbol{C}_{HS}(\boldsymbol{\theta}_{f}) \geq E_{p}\left[\left(\widehat{\boldsymbol{\theta}}\left(\overline{\boldsymbol{x}}\right) - \boldsymbol{\theta}_{f}\right)\boldsymbol{\eta}\left(\overline{\boldsymbol{x}}\right)^{T}\right] E_{p}\left[\boldsymbol{\eta}\left(\overline{\boldsymbol{x}}\right)\boldsymbol{\eta}\left(\overline{\boldsymbol{x}}\right)^{T}\right]^{-1} \times E_{p}\left[\boldsymbol{\eta}\left(\overline{\boldsymbol{x}}\right)\left(\widehat{\boldsymbol{\theta}}\left(\overline{\boldsymbol{x}}\right) - \boldsymbol{\theta}_{f}\right)^{T}\right], (4)$$

also called the Huber's "sandwich" (covariance) inequality. Note that $C_{HS}(\boldsymbol{\theta}_{f})$ (3) is obtained for $\boldsymbol{\eta}(\overline{\boldsymbol{x}}) = \frac{\partial \ln f(\overline{\boldsymbol{x}}|\boldsymbol{\theta}_{f})}{T\partial \boldsymbol{\theta}}$ [Richmond - Horowitz]. • However, any lower bound deriving from (4), including (3), depends on $\theta_f \Rightarrow$ its numerical evaluation requires to solve (2) for each value of θ , a procedure suffering from a large computational cost when the dimension of θ increases \Rightarrow a possible strategy to circumvent these limitations is the alternative approach proposed in [Fritsche et al]

• We compare using two examples, the MSE of MMLE:

$$\widehat{\theta}^{0}(\mathbf{x}) = \mathbf{w}_{f}^{T}\mathbf{x}, \quad \mathbf{w}_{f} = \mathbf{C}_{f}^{-1}\mathbf{d}_{f} / \mathbf{d}_{f}^{T}\mathbf{C}_{f}^{-1}\mathbf{d}_{f}, \quad (13)$$

the Huber's MSE prediction computed from the "sandwich covariance" (3), the generalized Hammersley-Chapman-Robbins bound (GHCRB), the generalized Cramer-Rao bound (GCRB), the generalized bound derived by Fritsche et al (referred to as FB) and the CRB associated to the true and assumed p.d.f.s.

Figure: MSE vs. \triangle of (a) Example 1 and (b) Example 2.

Barankin-Type Lower Bounds for Correctly Specified Models • We focus on the estimation of a single unknown real deterministic parameter θ , and denote $E_{\theta}[\mathbf{g}(\overline{\mathbf{x}})] \triangleq E_{f_{\theta}}[\mathbf{g}(\overline{\mathbf{x}})] = \int \mathbf{g}(\overline{\mathbf{x}}) f_{\theta}(\overline{\mathbf{x}}) d\overline{\mathbf{x}}.$ •1) The MSE of an estimator $\widehat{\theta}^0$ of θ^0 , $\widehat{\theta}^0 \triangleq \widehat{\theta}^0(\overline{\mathbf{x}})$, is a norm: $MSE_{\theta^{0}}\left[\widehat{\theta^{0}}\right] = \left\|\widehat{\theta^{0}}\left(\overline{\mathbf{x}}\right) - \theta^{0}\right\|_{\rho^{0}}^{2}, \quad \left\langle u\left(\overline{\mathbf{x}}\right) \mid v\left(\overline{\mathbf{x}}\right)\right\rangle_{\theta} = E_{\theta}\left[u\left(\overline{\mathbf{x}}\right)v\left(\overline{\mathbf{x}}\right)\right]$ (5)2) Uniform unbiasedness, if Θ denotes the parameter space, can be recasted as: $\forall \theta \in \Theta : E_{\theta} \left| \widehat{\theta^{0}}(\overline{\mathbf{x}}) \right| = \theta \Leftrightarrow \left\langle \widehat{\theta^{0}}(\overline{\mathbf{x}}) - \theta^{0} \mid \upsilon_{\theta^{0}}(\overline{\mathbf{x}};\theta) \right\rangle_{\theta^{0}} = \theta - \theta^{0}$ (6)where $v_{\theta^0}(\overline{\mathbf{x}}; \theta) = \frac{f_{\theta}(\overline{\mathbf{x}})}{f_{\theta^0}(\overline{\mathbf{x}})}$ denotes the likelihood ratio (LR). $\bullet \Rightarrow$ the MVUE is the solution of a norm minimization under linear constraints: $\min\left\{\left\|\widehat{\theta^{0}}\left(\overline{\mathbf{x}}\right) - \theta^{0}\right\|_{\theta^{0}}^{2}\right\} \text{ under } \forall \theta \in \Theta : \left\langle\widehat{\theta^{0}}\left(\overline{\mathbf{x}}\right) - \theta^{0} \mid \upsilon_{\theta^{0}}\left(\overline{\mathbf{x}};\theta\right)\right\rangle_{\theta^{0}} = \theta - \theta^{0}.$ (7)

We assume that $\mathbf{d}_p = \mathbf{1}_M$, $\mathbf{d}_f = (1 + \Delta) \mathbf{d}_p$ where Δ is varied in the interval [-1,1], $\theta^0 = 1$, and $\mathbf{C}_p = \mathbf{I}_M$ (unit noise power).

• In the first example, M = 2, $\mathbf{C}_f = \mathbf{C}_p$, that is the true noise power is accurately known, whereas in the second example, M = 5, and the true noise power is known up to a scalar factor, which is assumed to be 1.2: $\mathbf{C}_f = 1.2 \times \mathbf{C}_p$. • Fig. 1b) exemplify the fact that the standard CRBs no longer provide a lower bound on estimation performance whatever the misspecification considered. • It appears that the *generalized* "Small Errors" bounds (FB and GCRB) are unlikely to be informative in a large domain of misspecification values (Δ, \mathbf{C}_f) , since they become overly optimistic as soon as the misspecification on (Δ, \mathbf{C}_f) increases. Fortunately, the behavior of the GHCRB suggests that the use of generalized "Large Errors" bounds (generalized Barankin-Type LBs) will allow to increase the domain of misspecification values (Δ, \mathbf{C}_f) where such LBs remain tight enough to be relevant.