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Abstract
When the assumed probability distribution of the observations differs from the
true distribution, the model is said to be misspecified. The key results on
maximum-likelihood estimation of misspecified models have been introduced in
the limit of large sample support and depend on a parameters vector solution of a
computationally expensive non-linear optimization problem. As a possible strategy
to circumvent these limitations, we extend the approach lately proposed by
Fritsche et al. It is shown that the lower bound derived in Fritsche et al is a
representative of a family of lower bounds deriving from a misspecified
unbiasedness constraint leading to generalized Barankin-type lower bounds. For
future use, we derive the standard representative of the ”Small Errors” and
”Large Errors” bounds, namely the generalized CRB and the generalized
McAulay-Seidman bound.

Background on MLEs under misspecification
Maximum likelihood estimators (MLEs) are, under reasonably general conditions
on the probabilistic observation model, in the limit of large sample support,
Gaussian distributed and consistent, if the probability distribution function
(p.d.f.) which determines the behavior of the observations is assumed to be
”correctly specified”.

ctually, in many (if not most) circumstances, a certain amount of mismatch
between the true p.d.f. of the observations denoted p (xt), {xt}Tt=1 i.i.d., and
the probability model fθ (xt) , f (xt|θ) that we assume is present.

As a consequence, it is natural to investigate what happens to the properties of
MLEs if the probability model is misspecified, i.e. not correctly specified [Huber,
Akaike, White, Vuong].

Under mild regularity conditions, the misspecified MLE (MMLE) defined as:

θ̂ (x) = arg max
θ
{fθ (x) = fθ (x1) . . . fθ (xT )} , xT =

(
xT1 , . . . ,x

T
T

)
, (1)

is, in the limit of large sample support (T →∞), a strongly consistent
estimator for the parameters vector which minimizes the KLIC:

θ̂ (x)
a.s.→ θf = arg min

θ
{Ep [ln (p (xt))− ln (fθ (xt))]} , (2)

p (x) = p (x1) . . . p (xT ), Ep [g (x)] =
∫
g (x) p (x) dx.

Moreover θ̂ (x) is asymptotically normal: θ̂ (x)
A∼ N

(
θf ,C θ̂

)
,

C θ̂

a.s.→ CHS (θf), where the asymptotic covariance matrix CHS (θf), the
so-called Huber’s ”sandwich covariance”, is given by:

TCHS (θf) = Ep

[
∂2 ln f (xt|θf)

∂θ∂θT

]−1

Ep

[
∂ ln f (xt|θf)

∂θ

∂ ln f (xt|θf)

∂θT

]
× Ep

[
∂2 ln f (xt|θf)

∂θ∂θT

]−1

. (3)

A covariance matrix is the tightest LB on itself since it satisfies the covariance
inequality. Thus ∀η (x):

CHS (θf) ≥ Ep

[(
θ̂ (x)− θf

)
η (x)T

]
Ep

[
η (x)η (x)T

]−1

× Ep

[
η (x)

(
θ̂ (x)− θf

)T]
, (4)

also called the Huber’s ”sandwich” (covariance) inequality. Note that

CHS (θf) (3) is obtained for η (x) =
∂ ln f (x|θf)

T∂θ [Richmond - Horowitz].

However, any lower bound deriving from (4), including (3), depends on θf ⇒
its numerical evaluation requires to solve (2) for each value of θ, a procedure
suffering from a large computational cost when the dimension of θ increases ⇒
a possible strategy to circumvent these limitations is the alternative approach
proposed in [Fritsche et al]

Barankin-Type Lower Bounds for Correctly Specified Models
We focus on the estimation of a single unknown real deterministic parameter θ,
and denote Eθ [g (x)] , Efθ [g (x)] =

∫
g (x) fθ (x) dx.

1) The MSE of an estimator θ̂0 of θ0, θ̂0 , θ̂0 (x), is a norm:

MSEθ0

[
θ̂0
]

=
∥∥∥θ̂0 (x)− θ0

∥∥∥2

θ0
, 〈u (x) | v (x)〉θ = Eθ [u (x) v (x)] (5)

2) Uniform unbiasedness, if Θ denotes the parameter space, can be recasted as:

∀θ ∈ Θ : Eθ

[
θ̂0 (x)

]
= θ ⇔

〈
θ̂0 (x)− θ0 | υθ0 (x; θ)

〉
θ0

= θ − θ0 (6)

where υθ0 (x; θ) = fθ(x)
fθ0(x) denotes the likelihood ratio (LR).

⇒ the MVUE is the solution of a norm minimization under linear constraints:

min

{∥∥∥θ̂0 (x)− θ0
∥∥∥2

θ0

}
under ∀θ ∈ Θ :

〈
θ̂0 (x)− θ0 | υθ0 (x; θ)

〉
θ0

= θ − θ0.

(7)

All “computable” LBs for correctly specified models derive from sets of discrete
or integral linear transform of (6) and are obtained from lemma:
The problem of the minimization of ‖u‖2 under the K linear constraints
〈u | ck〉 = vk, k ∈ [1, K], then has the solution:

min
{
‖u‖2

}
= vTR−1v, Rn,k = 〈ck | cn〉 . (8)

Generalized Barankin-Type Lower Bounds for Misspecified Models

If fθ (x) is the true p.d.f., the MLE θ̂0
ML of θ0 is, in the limit of large sample

support, uniformly unbiased with respect to fθ (x):

∀θ ∈ Θ : Eθ

[
θ̂0
ML (x)

]
= θ. (9)

If fθ (x) is not the true p.d.f. of the observations, then (9) is no longer the
uniform unbiasedness constraint (6) but a given linear constraint:∫

θ̂0
ML (x) fθ (x) dx = θ,

∫
fθ (x) dx = 1. (10)

As fθ (x) is a p.d.f., it makes sense to regard (9-10) as a misspecification of
the uniform unbiasedness property.

Then, any estimator θ̂0 verifying (9) satisfies,

∀θ ∈ Θ : Ep

[(
θ̂0 (x)− θ0

)
ωp (x; θ)

]
= θ − θ0, ωp (x; θ) =

fθ (x)

p (x)
, (11)

and (7) becomes:

min

{
MSEp

[
θ̂0
]

=
∥∥∥θ̂0 (x)− θ0

∥∥∥2

p

}
under

∀θ ∈ Θ :
〈
θ̂0 (x)− θ0 | ωp (x; θ)

〉
p

= θ − θ0, (12)

where 〈u (x) | v (x)〉p = Ep [u (x) v (x)] ⇒ generalization of the BB under
unbiasedness misspecification and an unknown true parametric p.d.f. p (x).

Application to Linear Gaussian Models
The following true linear Gaussian model is considered: x = dpθ + n,
n ∼ N (0,Cp), where dp ∈ RM and Cp ∈ RM×M are supposed to be known.
For any selected value θ0 of the parameter θ, the true p.d.f. of the observation
is then p (x) , pθ0 (x) , pN

(
x|dpθ0,Cp

)
.

Even if the linear structure and the noise p.d.f. are known, generally dp and Cp

are not accurately known and are replaced by assumed values df and Cf ,
leading to the following assumed p.d.f. fθ (x) , pN (x|dfθ,Cf).

We compare using two examples, the MSE of MMLE:

θ̂0 (x) = wT
fx, wf = C−1

f df / dTfC
−1
f df , (13)

the Huber’s MSE prediction computed from the ”sandwich covariance” (3), the
generalized Hammersley-Chapman-Robbins bound (GHCRB), the generalized
Cramer-Rao bound (GCRB), the generalized bound derived by Fritsche et al
(referred to as FB) and the CRB associated to the true and assumed p.d.f.s.
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(a)M = 2, Cf = Cp (b)M = 5, Cf = 1.2× Cp.
Figure: MSE vs. ∆ of (a) Example 1 and (b) Example 2.

We assume that dp = 1M , df = (1 + ∆)dp where ∆ is varied in the interval
[−1, 1], θ0 = 1, and Cp = IM (unit noise power).

In the first example, M = 2, Cf = Cp, that is the true noise power is accurately
known, whereas in the second example, M = 5, and the true noise power is
known up to a scalar factor, which is assumed to be 1.2: Cf = 1.2×Cp.

Fig. 1b) exemplify the fact that the standard CRBs no longer provide a lower
bound on estimation performance whatever the misspecification considered.

It appears that the generalized ”Small Errors” bounds (FB and GCRB) are
unlikely to be informative in a large domain of misspecification values (∆,Cf),
since they become overly optimistic as soon as the misspecification on (∆,Cf)
increases. Fortunately, the behavior of the GHCRB suggests that the use of
generalized ”Large Errors” bounds (generalized Barankin-Type LBs) will allow
to increase the domain of misspecification values (∆,Cf) where such LBs
remain tight enough to be relevant.
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