IVMSP-P6.3 Markov Random Field Based Pruning and Learning Based Rescoring for Object Detection

Background

Fast R-CNN [Girshick, 2015]

"Context" in object detection

= information out of each candidate window

= co-occurrence of objects, spatial layout,

scale, background, scene of image, ...

R-CNN based methods do not consider context.

Proposed Method

pruning result

rescoring result

Use coordinate in [Hoiem+, 2008] to model context.

 b_w : 1 if detection is correct else 0 c_w : class of candidate window w H_{c_w} : physical height of c_w $L_y^w = \frac{l_w^e}{l^h} H_{c_w}$ (= vertical position) $L_{z}^{W} = \frac{1}{\mu} H_{c_{W}} (= \text{size})$

Distribution of windows are fitted by Cauchy distribution. Conditional probability of each relation is calcurated.

$$p_{pos}(w,w') = p(b_w = 1, b_{w'} = 1 | d(L_w^y, L_{w'}^y), c_w, c_{w'})$$

$$p_{scale}(w,w') = p(b_w = 1, b_{w'} = 1 | d(L_w^z, L_{w'}^z), c_w, c_{w'})$$

Naoto Inoue, Ryosuke Furuta, Toshihiko Yamasaki, Kiyoharu Aizawa

Dept. Information and Communication Engineering, The University of Tokyo

1 Pruning by MRF

Decide whether each window should be pruned $(y_w = 1)$ or not $(y_w = 0)$. Solved by QPBO [Kolmogorov+, 2007] energy minimization. Better than just setting threshold.

$$\mathbf{y} = \{y_{w_1}, y_{w_2}, \dots\}, E(\mathbf{y}) = \sum_i \phi(y_{w_i}) + \beta \sum_{i,j} \varphi$$
$$\rightarrow \mathbf{y}^* = argminE(\mathbf{y})$$

constructed graph

2 Rescoring by SVM

Predict whether each window is correct by SVM. New score s_{w} is calcurated based on decision value d_{w} .

$$s_w = \frac{1}{1 + e^{-3d_w}} \ (0 \le s_w \le 1)$$

Type of feature		
Score of the window		
Probability of vertical position $(p(b_w = 1 L_y^w, c_w))$		
Vertical position likelihood between windows		
Scale likelihood between windows		
Scene probability by Places-CNN [zhou+, 2014] (p_{scene})	205	

Experimental Results

Evaluation

Baseline detector: Fast R-CNN [Girchick+, 2015]. Dataset: VOC2007 and MSCOCO.

Dataset	VOC2007-test		MSCOCO-val	
Evaluation metric	mAP [%]	F1 [%]	mAP [%]	F1 [%]
Baseline (Fast R-CNN)	66.9	3.5	32.3	8.4
+ Tree Context [Choi+, 2012]	60.9 (- <mark>6.0</mark>)	3.5 (+0.0)	-	-
+ HOOD [Cao+, 2015]	57.9 (- 9.0)	67.2 (+63.7)	21.0 (-10.3)	34.0 (+25.6)
+ threshold	66.5 (-0.4)	24.4 (+20.9)	32.1 (-0.2)	11.8 (+3.4)
+ pruning	66.5 (-0.4)	26.2 (+22.7)	32.2 (-0.1)	11.0 (+2.6)
+ pruning + rescoring	67.3 (<mark>+0.4</mark>)	26.2 (+22.7)	33.0 (+0.7)	11.0 (+2.6)

 $\rho(y_{w_i}, y_{w_j})$

energy minimized

Examples

ground truth

proposed

results

Fast R-CNN

results

(*) windows whose score are > 0.05 are shown.

Application: Structured Retrieval

Given a query q containing image i_a and a window pair (w_a, w_a') , find target t contatining i_t and (w_t, w_t') that has smallest distance. Compararison with HOOD [Cao+, 2015]

$$dist(q,t) = (1 - \lambda_g) \left\| \begin{pmatrix} p_{pos}(w_q, w'_q) \\ p_{scale}(w_q, w'_q) \end{pmatrix} - \begin{pmatrix} \end{pmatrix} \right\| \begin{pmatrix} p_{pos}(w_q, w'_q) \\ p_{scale}(w_q, w'_q) \end{pmatrix} - \begin{pmatrix} \end{pmatrix} \right\| \left(\begin{pmatrix} p_{pos}(w_q, w'_q) \\ p_{scale}(w_q, w'_q) \end{pmatrix} - \begin{pmatrix} \end{pmatrix} \right\| \left(\begin{pmatrix} p_{pos}(w_q, w'_q) \\ p_{scale}(w_q, w'_q) \end{pmatrix} - \begin{pmatrix} \end{pmatrix} \right\| \left(\begin{pmatrix} p_{pos}(w_q, w'_q) \\ p_{scale}(w_q, w'_q) \end{pmatrix} \right) - \begin{pmatrix} \end{pmatrix} \right\| \left(\begin{pmatrix} p_{pos}(w_q, w'_q) \\ p_{scale}(w_q, w'_q) \end{pmatrix} \right) - \begin{pmatrix} \end{pmatrix} \right\| \left(\begin{pmatrix} p_{pos}(w_q, w'_q) \\ p_{scale}(w_q, w'_q) \end{pmatrix} \right) - \begin{pmatrix} p_{pos}(w_q, w'_q) \\ p_{scale}(w_q, w'_q) \end{pmatrix} \right\| \left(\begin{pmatrix} p_{pos}(w_q, w'_q) \\ p_{scale}(w_q, w'_q) \end{pmatrix} \right) - \begin{pmatrix} p_{pos}(w_q, w'_q) \\ p_{scale}(w_q, w'_q) \end{pmatrix} \right\| \left(\begin{pmatrix} p_{pos}(w_q, w'_q) \\ p_{scale}(w_q, w'_q) \end{pmatrix} \right) - \begin{pmatrix} p_{pos}(w_q, w'_q) \\ p_{scale}(w_q, w'_q) \end{pmatrix} \right\| \left(\begin{pmatrix} p_{pos}(w_q, w'_q) \\ p_{scale}(w_q, w'_q) \end{pmatrix} \right) - \begin{pmatrix} p_{pos}(w_q, w'_q) \\ p_{scale}(w_q, w'_q) \end{pmatrix} \right\| \left(\begin{pmatrix} p_{pos}(w_q, w'_q) \\ p_{scale}(w_q, w'_q) \end{pmatrix} \right) - \begin{pmatrix} p_{pos}(w_q, w'_q) \\ p_{scale}(w_q, w'_q) \end{pmatrix} \right\| \left(\begin{pmatrix} p_{pos}(w_q, w'_q) \\ p_{scale}(w_q, w'_q) \end{pmatrix} \right) - \begin{pmatrix} p_{pos}(w_q, w'_q) \\ p_{scale}(w_q, w'_q) \end{pmatrix} \right\| \left(\begin{pmatrix} p_{pos}(w_q, w'_q) \\ p_{scale}(w_q, w'_q) \end{pmatrix} \right) - \begin{pmatrix} p_{pos}(w_q, w'_q) \\ p_{scale}(w_q, w'_q) \end{pmatrix} \right\| \left(\begin{pmatrix} p_{pos}(w_q, w'_q) \\ p_{scale}(w_q, w'_q) \end{pmatrix} \right) + \begin{pmatrix} p_{pos}(w_q, w'_q) \\ p_{scale}(w_q, w'_q) \end{pmatrix} \right\|$$

(chair, person)

Conclusion

- Reducing and rescoring candidate windows by considering contextual model.
- Fast R-CNN detectors are improved by

 $\binom{p_{pos}(w_t, w_t')}{p_{scale}(w_t, w_t')} \|_2 + \lambda_g \| \boldsymbol{p}_{scene}(i_q) - \boldsymbol{p}_{scene}(i_t) \|_2$

+0.4% on mAP and +22.7% on F1 in VOC2007-test. +0.7% on mAP and +2.6% on F1 in MSCOCO-val. Applications to structured retrieval are also presented.