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Multicast Transmission in a Cognitive Radio Network

Scenario Settings

I Primary group — with band license

I Secondary group — unlicensed, no

exact CSIs of primary users

I Interference to primary users must

not exceed certain thresholds

I Design a beamformer that maximizes

multicast max-min-fair SNR.

New Challenges

I Robust design.

I Solution quality.
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System Model

I A physical-layer multicasting cognitive radio system, SBS, equipped with N

antennas, transmits a common signal to M single-antenna SUs.

I Our design problem is formulated as

max
W

γ

s.t. h
H
i Whi ≥ γ, i = 1, . . . ,M,

max
‖fj‖≤δj

(aj + fj)
H
W (aj + fj) ≤ ηj , j = 1, . . . , J,

Tr (W ) ≤ P, W � 0, rank(W ) ≤ 1.

I hi ∈ CN denotes the perfectly estimated channel between the SBS and SU i .
I aj ∈ CN is the estimated channel and fj ∈ CN is the channel error.

I We are dealing with a class of NP-hard QCQP problems. Many researchers have

done this before [SDL06, KSL08, GSS+10, HLMZ12, WLMS14, LMS+10].
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The SDR and S-lemma Techniques

I Step 1: Drop the rank constraint by using the SDR.

I Step 2: Denote cj = Waj , ζj = a
H
j Waj and rewrite the robust constraints to

∀‖fj‖2 ≤ δ2
j ,

(
f
H
j Wfj + 2Re

{
c
H
j fj

}
+ ζj

)
≤ ηj ,

I Step 3: Apply the S-lemma and convert the relaxed problem into a system of

linear matrix inequalities (LMIs):

W
? = arg max

W ,γ,κj

γ

s.t. h
H
i Whi ≥ γ, i = 1, . . . ,M,[
κj IN −W −cj
−cHj ηj − ζj − δ2

j κj

]
� 0, j = 1, . . . , J,

κj ≥ 0, j = 1, . . . , J,

Tr (W ) ≤ P, W � 0.

This problem can be solved by a bisection method.
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Non-rank-one Issue

NP-hardness: W ? is generally not rank-one.

Algorithm 1 Gaussian Randomization Procedure

1: input: an optimal solution W
?, number of randomizations NR ≥ 1

2: for ` = 1, . . . ,NR do

3: generate ξ` ∼ CN (0,W ?)

4: set ξ̃` = ξ̂`
/√

max
{
π`,maxj=1,...,J

{
ι`j
}}

, where

π` = Tr(Ŵj)/P, ι`j = max
‖fj‖≤δj

(aj + fj)
H ξ̂`(ξ̂`)H(aj + fj)/ηj

5: end for

6: let `? = arg max`=1,...,NR |hH
i ξ̃

`|2

7: output: a feasible solution ŵ = ξ̃`
?

A note: by using the triangular inequality, we can obtain ιjr in a closed form:

ι`j = max
‖fj‖≤δj

∣∣∣(aj + fj)
H ξ̂`
∣∣∣2 =

(∣∣∣aHj ξ̂`∣∣∣+ δj

∥∥∥ξ̂`∥∥∥)2

, f
?
j = δj · ξ̂`/

∥∥∥ξ̂`∥∥∥
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Motivations

Key problem in this work: evaluate the quality of the SDR solution ŵ .

I By using SDR to approximate the NP-hard QCQP, it is important to know the

approximation quality.

I None of existing works study SDR approximation bounds for QCQPs applicable to
imperfect CSIs,

I Approximation bounds for standardized QCQPs under perfect CSIs [CLC08].
I Approximation bounds for one-variable fractional QCQPs under perfect CSIs

[JWSM13, WLSM16].
I Approximation bounds for two-variable fractional QCQPs under perfect CSIs

[WSPM16].

I It is essentially a fundamental problem in optimization theory.
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Main Theorem

Theorem 1

Considering the design problem and Algorithm 1, we have

Pr
(

min
i=1,...,M

h
H
i ŵ ŵ

H
hi = Ω

( 1

MN log J

)
min

i=1,...,M
h
H
i W

?
hi

)
≥ 1− (3/4)NR,

where NR is the number of randomizations, M is the number of SU, J is the number

of PU, and N is the number of antennas.

I Scaling with M is 1/M.

I Scaling with N is 1/N.

I Scaling with J is 1/ log J.
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Step 1: write an equivalent problem

I Equivalent problem: determining parameters β ∈ (0, 1) and γ1, γ2 > 1 such that

Pr
(

min
i

∣∣∣hHi ξ̂`
∣∣∣2 ≥ βmin

i
h
H
i W

?
hi⋂ ∣∣∣(ξ̂`)H ξ̂`∣∣∣2 ≤ γ1Tr(W

?)
⋂

max
‖fj‖≤δj

∣∣∣(ξ̂`)H(aj + fj )
∣∣∣2

≤ γ2 max
‖fj‖≤δj

(aj + fj )
H
W

?(aj + fj ),∀j
)
≥ p, (1)

where ξ̂` (cf. Step 4) is the randomized solution (may be infeasible) for rand. `.

I Idea: If we set γ1 = π`, γ2 = maxj=1,...,J

{
ι`j
}

and ξ̃` = ξ̂`
/√

max {γ1, γ2}, the

resulting approximation ratio would be β/max {γ1, γ2}, with a probability at least

1− (1− p)NR. We now determine β, γ1 and γ2 as follows.
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Step 2: determine β and γ1.

Lemma 1

Following our previous work in [WLSM16, WSPM16] and [SYZ08, Proposition 2.1],

Pr
(

Tr(ξ̂`(ξ̂`)Hhih
H
i ) ≤ β · Tr(W?hih

H
i )
)
≤ e1+ln β ,

Pr
(

Tr(ξ̂`(ξ̂`)H) ≥ α · Tr(W?)
)
≤ e−

1
2 (γ1+2 log 1

2 ).

I Lemma 1 gives probability bounds parametrized by the scaling factors.

I By setting β = (4eM)−1, γ1 = log 64 ≈ 4.16 in (1) and then using the union

bounds, we obtain

Pr
(

min
i

∣∣∣hH
i ξ̂

`
∣∣∣2 ≤ βmin

i
h
H
i W

?
hi

)
≤ M · e1+log β = 1/4;

Pr
( ∣∣∣(ξ̂`)H ξ̂`∣∣∣2 ≥ γ1 · Tr(W?)

)
≤ e−

1
2 (γ1+2 log 1

2 ) = 1/4

for the first two events in (1).
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The Difficulty in Determining γ2

A naive attempt: we can deduce a lower bound

Pr

(
max
‖fj‖≤δj

(aj + fj)
H ξ̂`(ξ̂`)H(aj + fj) ≥ κ max

‖fj‖≤δj
(aj + fj)

H
W

?(aj + fj)

)
≥ p0. (2)

We observe

max
‖fj‖=δj

(aj + fj)
H ξ̂`(ξ̂`)H(aj + fj) ≥ κ max

‖fj‖≤δj
(aj + fj)

H
W

?(aj + fj)

=
⋃
‖fj‖=δj

(aj + fj)
H ξ̂`(ξ̂`)H(aj + fj) ≥ κ max

‖fj‖≤δj
(aj + fj)

H
W

?(aj + fj),

then a naive attempt may be to apply the union bound and use (2).

I No! Union bound does not work on an uncountable set.
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Find a Proper Way to Represent the Uncountable Set

Definition[HW87, BG95, Ver12]

I Let S be a set. A subset N ⊆ S is called an ε-net of S if for any point x ∈ S,

there exists a point z ∈ N such that ‖z − x‖ ≤ ε.

I Let S(δ) ⊂ Cn denote a sphere of radius δ. There exists an (δ/2)-net N δ/2
δ on

S(δ) with cardinality |N δ/2
δ | ≤ 52n.

I Use the ε-net to approximate the uncountably infinite set ‖fj‖ = δj by a finite set.
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Probability Bound Parametrized by ε and N

Lemma

Let |N ε
1 | be the cardinality of an ε-net N ε

1 of the unit sphere S = S(1). Given a ∈ Cn

and X
? ∈ Hn

+, let ξ ∼ CN (0,X ?). Then, for any κ > 1, 0 < ε < 1, we have

Pr
(

max
‖f ‖≤1

|ξH(a + f )| ≥ κ
(1 + ε

1− ε

)2

max
‖f ‖≤1

(a + f )HX ?(a + f )
)

≤ (|Nε1 |+ 1) exp (−(κ− 1)/6) . (3)

I The probability bound is parametrized by the approximation accuracy of the ε-net

and the dimension of the ball, i.e., N
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Step 3: determine γ2

Key: combine ε-net approximation and union bounds.

I We choose ε = 1/2, as well as γ2 =
(
6 log(4J(52N + 1)) + 1

)
· 32 to obtain

Pr

(
max
‖fj‖≤δj

∣∣∣(ξ̂`)H(aj + fj)
∣∣∣2 ≤ γ2 max

‖fj‖≤δj
(aj + fj)

H
W

?(aj + fj), ∀j ,
)
≤ 1/4. (4)

I By further using the union bound, let p = 1− 3/4 = 1/4 and

β/max {γ1, γ2} = β/γ2. This immediately leads to Theorem 1, which completes

the proof.
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Numerical Simulations: approx. bounds scaling with M

I hi , aj ∼ CN (0, I ), δj = 0.1,∀j , σ2 = 1, 1000 rand. and 100 channel realizations.

20 40 60
Number of Users (M)

10

12

14

16

18

20

22

24

26

W
or

st
 S

U
's

 S
N

R
 (

in
 d

B
)

SDR bound N=4
BF N=4
SDR bound N=8
BF N=8

20 40 60
Number of Users (M)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
at

io

N=4
N=8

Figure: The worst SU’s SNR and the approximation bound scale with M. The ratio is
mini=1,...,M h

H
i ŵŵ

H
hi

mini=1,...,M hH
i
W?hi

.

I As M increases, the SNR performance degrades and the gap between the SNRs

associated with the SDR solution and the optimal solution is enlarged.

I Verify Theorem 1: the ratio is larger for N = 8 than that for N = 4

SDR Approximation Bounds for the Robust Multicast Beamforming Problem with Interference Temperature Constraints 14 / 21



Numerical Simulations: approx. bounds scaling with J
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Figure: The worst SU’s SNR scales with N and J. Left: P = 20dB and J = 1. Right: P = 5dB, N = 4

and M = 32.

I Left: N increases, SNR becomes better but the gap between the two lines becomes wider.

I Right: J increases, SNR becomes worse and the gap becomes winder.

I These observations are consistent with the analytical results in Theorem 1.
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Conclusions

I We study the multicast beamforming design in a cognitive radio network.

I Our research object is the robust QCQPs: SDR and randomizations.

I Our main contribution is to provide the approximation bounds for robust QCQPs.

I Simulation results verify the theoretical analysis.
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Appendix: Proof of the Lemma (1)

Since for any X?, the maximum in (3) is attained at a point f ?(X?) with ‖f ?(X?)‖ = 1, we

focus on the set

U = {a + f : ‖f ‖ = 1} .

Fixing u ∈ U , we have u = a + f (u) for some ‖f (u)‖ = 1. By using the concept of the ε-net

on the unit sphere S = S(1), there exists an f0(u) ∈ N ε1 such that ‖f (u)− f0(u)‖ ≤ ε, which

implies that

u = a + f0(u) + ε1(u)f̃ (u)

for some ‖f̃ (u)‖ = 1 and 0 ≤ ε1(u) ≤ ε. In this way, we can express u as

u = a +
∑
k≥0

εk (u)fk (u),

where 0 ≤ εk (u) ≤ εk and fk (u) ∈ N ε1 for all k ≥ 0.
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Appendix: Proof of the Lemma (2)

Continuing this fashion, by setting D =
(∑

k≥0 εk (u)
)−1

, we can compute∣∣∣uHξ
∣∣∣ ≤∑

k≥0

εk (u)
∣∣∣(Da + fk (u))Hξ

∣∣∣
and ∣∣∣(Da + fk (u))Hξ

∣∣∣ ≤ ∣∣∣(a + fk (u))Hξ
∣∣∣+ |1− D|

∣∣∣aHξ∣∣∣ .
It follows that ∣∣∣uHξ

∣∣∣2 ≤
∑
k≥0

εk (u)
∣∣∣(a + fk (u))Hξ

∣∣∣+ |(1− D)/D|
∣∣∣aHξ∣∣∣

2

≤
[

1

D
sup
k≥0

∣∣∣(a + fk (u))Hξ
∣∣∣+

∣∣∣∣1− D

D

∣∣∣∣ ∣∣∣aHξ∣∣∣
]2
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Appendix: Proof of the Lemma (3)

Continuing this fashion, by setting D =
(∑

k≥0 εk (u)
)−1

, we can compute∣∣∣uHξ
∣∣∣ ≤∑

k≥0

εk (u)
∣∣∣(Da + fk (u))Hξ

∣∣∣
and ∣∣∣(Da + fk (u))Hξ

∣∣∣ ≤ ∣∣∣(a + fk (u))Hξ
∣∣∣+ |1− D|

∣∣∣aHξ∣∣∣ .
It follows that ∣∣∣uHξ

∣∣∣2 ≤
∑
k≥0

εk (u)
∣∣∣(a + fk (u))Hξ

∣∣∣+ |(1− D)/D|
∣∣∣aHξ∣∣∣

2

≤
[

1

D
sup
k≥0

∣∣∣(a + fk (u))Hξ
∣∣∣+

∣∣∣∣1− D

D

∣∣∣∣ ∣∣∣aHξ∣∣∣
]2

Observe that for any f ∈ N ε1 , we have{∣∣∣(a + f )Hξ
∣∣∣2} ≤κ · {(a + f )HX?(a + f )

}
with probability at least 1− exp

(
−κ−1

6

)
[SYZ08], [WLSM16, Lemma 2].
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Appendix: Proof of the Lemma (4)

Now, let f ? = arg max‖f ‖≤1(a + f )HX?(a + f ). Since fk (u) ∈ N ε1 for all u ∈ U and k ≥ 0,

the inequalities

sup
u∈U
k≥0

{∣∣∣(a + fk (u))Hξ
∣∣∣2} ≤κ · max

f∈Nε1

{
(a + f )HX?(a + f )

}
≤κ · (a + f

?)HX?(a + f
?)

hold with probability at least 1− |N ε1 | exp
(
−κ−1

6

)
for κ > 1, where the second inequality is

due to the optimality of f ?.

Similarly, the inequalities∣∣∣f Hξ∣∣∣2 ≤ κ · f HX?f ≤ κ · (a + f
?)HX?(a + f

?)

hold with probability at least 1− exp
(
−κ−1

6

)
for κ > 1. Observing that

(1 + |1− D|)/D ≤ (1 + ε)/(1− ε) and combining all the pieces together, we have

max
‖f ‖=1

∣∣∣(a + f )Hξ
∣∣∣2 ≤ κ(1 + ε

1− ε

)2
max
‖f ‖=1

(a + f )HX?(a + f ).

This completes the proof of Lemma 1.
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