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Stochastic Graph Processes

» Stochastic processes are essential to model random phenomena
= Extract useful information from the available (noisy) data

» Stationarity = Conditions on probability distribution of the process

= Strict Sense Stationarity (SSS) = Joint distribution

= Wide Sense Stationarity (WSS) = First, second order moments
» Ergodicity = Realization averaging converge to ensemble averaging
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» Regular structure descriptions are insufficient for modern datasets
» Networks = Graphs emerge as more accurate representations

Ensemble
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» Random phenomena supported on irregular structures
» Wide sense stationary (WSS) graph processes have been defined
= Power spectral density (PSD) estimation methods

Objective
» Extend notion of ergodicity to WSS graph processes
= Result reminiscent of weak law of large numbers (WLLN)
» Consistent unbiased estimator by diffusing a single realization
» Optimal design of graph filter that minimizes MSE

Graph signals

» Weighted graph G = (V, £, W) with n nodes =- Irregular support
» Graph signal x € R" = Data value on each node
» Graph shift operator S € R"*" = Captures local structure in G
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» Interaction between signal and support = Sx local operation
» Examples re adjacency matrix A and graph Laplacian L

Discrete-Time Signals

» Sequence of random signal values {xi, ..., xp} = E[x] =
» Time average is consistent unbiased estimator of the mean
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Mn:B;Xk = E[fd] = u
= Consistency given by the Law of Large Numbers =- Ergodicity
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» Model as a graph signal = G =Gq, = X =[x1,...,X5]" = E[x] = p1
» Diffuse signal ntimes =- All nodes contain the estimator

—Zxﬂ - ZA X = CZSt

=- Consistent estimator obtalned by dlffusmg a single realization
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Graph Fourier Transform

» Assume graph shift operator is normal = S = VAV"

» Project graph signal onto eigenbasis = % = V/x
= Defined as the graph Fourier transform (GFT)

» Linear combination of eigenvectors weighted by GFT coefficients
= X = VX = Inverse graph Fourier transfrom (iGFT)

ANALYSIS SYNTHESIS
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» Change of basis tailored to structure of graph
» |f graph is directed cycle (discrete-time signals) = DFT

Graph Filters

» Graph filter H: R" — R” = Map between graph signals
» Consider filters that are linear = H is a n x n matrix
» Polynomial in S of degree b — 1 with coefficients h = [hy, ..., hp_1]"

H=hl+mhS+- -+ hb_1Sb_1 = Zhgsg

» Linear shift-invariant graph filters (LSI-GF)

= Distributed implementation = Only up to b-hop information
» GFT of filter depends on eigenvalues of 8 = h = Wh € C”

= With [W],, = A, ' € C™P Vandermonde matrix

Wide Sense Stationary Graph Processes

» Probability space (2, /,P) = Random vector x : Q — R"
= [X]x random variable on each node of G
= Mean p = E[x] and covariance matrix C, = E[(X — p)(X — )]

» WSS impose statistical structure related to underlying graph support
= E[X] = uv, where v, eigenvector of S
= C, = Vdiag(p)V" = p: PSD = Cj = diag(p)
= Covariance matrix and GSO are simultaneously diagonalizable

» WSS graph process filtered by LSI-GF =- Output is WSS

» Definition holds for graph spectra with all different eigenvalues

The Concept of Mean

» Traditional SP = Mean is DC (constant) component of signal
=- Contribution of zero-frequency =- Slowest time-varying

» GSP = Find the slowest node-varying eigenvector = v,

» Use concept of total variation (TV) to find v,
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» Ordering = Anax is real and positive for connected graphs
= Vmax IS the slowest-node varying eigenvector = V;, = Vmax
= TV increases as eigenvalues are located further away from Anax

Ak — Amax| < [Ae—r] = TV(vk) < TV(v))
» Specific case of connected graph with positive weights

= Eigenvector v has all positive elements
= The number of zero-crossings is minimal (none)

» Order eigenvalues from slowest to fastest = Ay = Anax A2, ..., An

» Discrete-time signals =- nvalues used to estimate a scalar u
» Graph signals =- value of n-hop diffusion used to estimate a scalar u
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Unbiased Diffusion Estimator

» Discrete-time estimator = Graph g = G4 directed cycle
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» Extendto GSP = Es’umate mean from diffusing single realization
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= Scaling constant (unb|ased) = Eigenvalue associated to mean

» Unbiased E[f1,] = p = Covariance matrix C; = Vdiag(q)V"

» Estimator /i, is also a WSS graph process = q: PSD of estimator
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» P is associated to the power of the mean

Qk = P n
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» Since Re{ 1} > Re{ k), M| > || = LPF thatlowers p,, k=2,....n

Weak Law of Large Numbers for WSS Graph Processes

» Prove consistency of unbiased diffusion estimator
= Convergence result like the weak law of large numbers

» Bound error of estimating mean at node /
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= Depends on q and on rows of V (also orthonormal)
» Behavior of gx = Assume |\x|/A = o(n~%2™), 6 >0o0r A\ = 1

gi=p ., q=o(n’), k=2,.
— Directed cycle and Erdds-Rényi graphs sat|sfy this condition

Weak Law of Large Numbers for WSS graph processes
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» Depends on the variance p; of mean component
» Graphs satisfying certain spectral conditions = Error —» 0 as n — oc
» Ergodicity = Estimate mean of process from single realization

Optimal Unbiased Graph Filter Estimator

» Diffusion estimator is a LS| graph filter with constant taps
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» Consider a general LSI graph filter = Unbiased estimator
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» z,is a WSS graph process = Covariance matrix C, = Vdiag(r)V"
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» Recall the GFT of filter taps = h = Wh (depends on eigenvalues)
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» Select filter taps that minimize mean squared error (MSE)
mintr[C,] = hi#£0,h=0, k=2,...,n
h

» The PSD of the optimal unbiased graph filter estimator
n=pi, k=0, k=2,...,n

= Attenuates all frequencies except for the DC component

Consistency for optimal unbiased graph filter estimator

» This result holds for any underlying graph support

» PSD of z,, is nonzero only for component associated to mean
= Perfect low pass filter applied to the realization
= No need for other eigenvalues to satisfy any conditions

Erdos-Rényi Graphs

» Simulate 100 ER graphs for each n with p = 0.2
» Generate realization of WSS process =- Compute bound
» Estimate probability of error out of 10,000 realizations

(a) Diffusion Estimator (b) Optimal Estimator

» ER satisfies conditions = Both estimators yield same result

Covariance graph

» Simulate 100 covariance graphs for each n = Gaussianr. v.
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(a) Diffusion Estimator (b) Optimal Estimator

» Bound and probability of error for optimal estimator are lower
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» Build covariance graph from a set of 5, 000 training samples
» Sample mean obtained from the training set {x;}¥
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» Single realization x = Compute unbiased diffusion estimator

Z S'x ~ E[X]
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(a) Sample average (b) Single realization (c) Diffusion estimator
» Consider the sample average to be the true mean

» Diffusing single image =- Resulting image respresents true mean

Conclusions and future work

» Obtained consistent unbiased estimator of the mean

= Reminiscent of weak law of large numbers
» Based on diffusion of a single realization = Ergodicity

= Graph ergodicity =- Information about E[x] is in the graph
» Designed optimal graph filter that minimizes MSE

» Obtain a Strong Law of Large Numbers result
» Characterize ergodicity for all moments = Strict Sense Stationarity
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