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Stochastic Graph Processes

I Stochastic processes are essential to model random phenomena
⇒ Extract useful information from the available (noisy) data

I Stationarity ⇒ Conditions on probability distribution of the process
⇒ Strict Sense Stationarity (SSS) ⇒ Joint distribution
⇒Wide Sense Stationarity (WSS) ⇒ First, second order moments

I Ergodicity ⇒ Realization averaging converge to ensemble averaging
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I Regular structure descriptions are insufficient for modern datasets
I Networks ⇒ Graphs emerge as more accurate representations

I Random phenomena supported on irregular structures
I Wide sense stationary (WSS) graph processes have been defined

⇒ Power spectral density (PSD) estimation methods

Objective
I Extend notion of ergodicity to WSS graph processes

⇒ Result reminiscent of weak law of large numbers (WLLN)
I Consistent unbiased estimator by diffusing a single realization
I Optimal design of graph filter that minimizes MSE

Graph signals

I Weighted graph G = (V , E ,W) with n nodes ⇒ Irregular support
I Graph signal x ∈ Rn ⇒ Data value on each node
I Graph shift operator S ∈ Rn×n ⇒ Captures local structure in G

I Interaction between signal and support ⇒ Sx local operation
I Examples re adjacency matrix A and graph Laplacian L

Discrete-Time Signals

I Sequence of random signal values {x1, . . . , xn} ⇒ E[xk ] = µ

I Time average is consistent unbiased estimator of the mean

µ̂n =
1
n

n∑
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xk ⇒ E[µ̂n] = µ

⇒ Consistency given by the Law of Large Numbers ⇒ Ergodicity
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I Model as a graph signal ⇒ G = Gdc ⇒ x = [x1, . . . , xn]T ⇒ E[x] = µ1
I Diffuse signal n times ⇒ All nodes contain the estimator
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⇒ Consistent estimator obtained by diffusing a single realization

Graph Fourier Transform

I Assume graph shift operator is normal ⇒ S = VΛVH

I Project graph signal onto eigenbasis ⇒ x̃ = VHx
⇒ Defined as the graph Fourier transform (GFT)

I Linear combination of eigenvectors weighted by GFT coefficients
⇒ x = Vx̃ ⇒ Inverse graph Fourier transfrom (iGFT)

I Change of basis tailored to structure of graph
I If graph is directed cycle (discrete-time signals) ⇒ DFT

Graph Filters

I Graph filter H : Rn → Rn ⇒ Map between graph signals
I Consider filters that are linear ⇒ H is a n × n matrix
I Polynomial in S of degree b − 1 with coefficients h = [h0, . . . ,hb−1]T

H = h0I + h1S + · · · + hb−1Sb−1 =
b−1∑
`=0

h`S`

I Linear shift-invariant graph filters (LSI-GF)
⇒ Distributed implementation ⇒ Only up to b-hop information

I GFT of filter depends on eigenvalues of S ⇒ h̃ = Ψh ∈ Cn

⇒With [Ψ]k ,` = λ`−1
k ∈ Cn×b Vandermonde matrix

Wide Sense Stationary Graph Processes

I Probability space (Ω,F ,P) ⇒ Random vector x : Ω→ Rn

⇒ [x]k random variable on each node of G
⇒ Mean µ = E[x] and covariance matrix Cx = E[(x− µ)(x− µ)H]

I WSS impose statistical structure related to underlying graph support
⇒ E[x] = µvm where vm eigenvector of S
⇒ Cx = Vdiag(p)VH ⇒ p: PSD ⇒ Cx̃ = diag(p)

⇒ Covariance matrix and GSO are simultaneously diagonalizable

I WSS graph process filtered by LSI-GF ⇒ Output is WSS

I Definition holds for graph spectra with all different eigenvalues

The Concept of Mean

I Traditional SP ⇒ Mean is DC (constant) component of signal
⇒ Contribution of zero-frequency ⇒ Slowest time-varying

I GSP ⇒ Find the slowest node-varying eigenvector ⇒ vm

I Use concept of total variation (TV) to find vm
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I Ordering ⇒ λmax is real and positive for connected graphs
⇒ vmax is the slowest-node varying eigenvector ⇒ vm = vmax

⇒ TV increases as eigenvalues are located further away from λmax

|λk − λmax| < |λ` − r | ⇒ TV (vk) < TV (v`)

I Specific case of connected graph with positive weights
⇒ Eigenvector vmax has all positive elements
⇒ The number of zero-crossings is minimal (none)

I Order eigenvalues from slowest to fastest ⇒ λ1 = λmax,λ2, . . . , λn

I Discrete-time signals ⇒ n values used to estimate a scalar µ
I Graph signals ⇒ value of n-hop diffusion used to estimate a scalar µ

Unbiased Diffusion Estimator

I Discrete-time estimator ⇒ Graph G = Gdc directed cycle
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I Extend to GSP ⇒ Estimate mean from diffusing single realization
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⇒ Scaling constant (unbiased) ⇒ Eigenvalue associated to mean
I Unbiased E[µ̂n] = µ ⇒ Covariance matrix Cµ̂ = Vdiag(q)VH

I Estimator µ̂n is also a WSS graph process ⇒ q: PSD of estimator
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, k = 1, . . . ,n

I p1 is associated to the power of the mean
I Since Re{λ1} > Re{λk}, |λ1| ≥ |λk | ⇒ LPF that lowers pk , k = 2, . . . ,n

Weak Law of Large Numbers for WSS Graph Processes

I Prove consistency of unbiased diffusion estimator
⇒ Convergence result like the weak law of large numbers

I Bound error of estimating mean at node `

P (|[µ̂n − µ̂]`| > ε) ≤ 1
ε2

n∑
k=1

qk |v`,k |

⇒ Depends on q and on rows of V (also orthonormal)
I Behavior of qk ⇒ Assume |λk |/λ1 = o(n−δ/2n), δ > 0 or λ1 = 1

q1 = p1 , qk = o(n−δ) , k = 2, . . . ,n

⇒ Directed cycle and Erdős-Rényi graphs satisfy this condition

Weak Law of Large Numbers for WSS graph processes

min
`=1,...,n

P (|[µ̂n − µ]`| > ε) ≤ p1

nε2
+ o(n−δ)

I Depends on the variance p1 of mean component
I Graphs satisfying certain spectral conditions ⇒ Error→ 0 as n→∞
I Ergodicity ⇒ Estimate mean of process from single realization

Optimal Unbiased Graph Filter Estimator

I Diffusion estimator is a LSI graph filter with constant taps
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, t = 0,1, . . . ,n − 1

I Consider a general LSI graph filter ⇒ Unbiased estimator(
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I zn is a WSS graph process ⇒ Covariance matrix Cz = Vdiag(r)VH
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I Recall the GFT of filter taps ⇒ h̃ = Ψh (depends on eigenvalues)
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I Select filter taps that minimize mean squared error (MSE)

min
h̃

tr[Cz] ⇒ h̃1 6= 0, h̃k = 0 , k = 2, . . . ,n

I The PSD of the optimal unbiased graph filter estimator

r1 = p1 , rk = 0 , k = 2, . . . ,n

⇒ Attenuates all frequencies except for the DC component

Consistency for optimal unbiased graph filter estimator

min
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nε2

I This result holds for any underlying graph support
I PSD of zn is nonzero only for component associated to mean

⇒ Perfect low pass filter applied to the realization
⇒ No need for other eigenvalues to satisfy any conditions

Erdős-Rényi Graphs

I Simulate 100 ER graphs for each n with p = 0.2
I Generate realization of WSS process ⇒ Compute bound
I Estimate probability of error out of 10,000 realizations
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(a) Diffusion Estimator
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(b) Optimal Estimator

I ER satisfies conditions ⇒ Both estimators yield same result

Covariance graph

I Simulate 100 covariance graphs for each n ⇒ Gaussian r. v.
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(a) Diffusion Estimator
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(b) Optimal Estimator

I Bound and probability of error for optimal estimator are lower

MNIST Handwritten digits

I Build covariance graph from a set of 5,000 training samples
I Sample mean obtained from the training set {xi}N

i=1

1
N

N∑
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xi ≈ E[x]

I Single realization x ⇒ Compute unbiased diffusion estimator
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Stx ≈ E[x]
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(c) Diffusion estimator

I Consider the sample average to be the true mean
I Diffusing single image ⇒ Resulting image respresents true mean

Conclusions and future work

I Obtained consistent unbiased estimator of the mean
⇒ Reminiscent of weak law of large numbers

I Based on diffusion of a single realization ⇒ Ergodicity
⇒ Graph ergodicity ⇒ Information about E[x] is in the graph

I Designed optimal graph filter that minimizes MSE

I Obtain a Strong Law of Large Numbers result
I Characterize ergodicity for all moments ⇒ Strict Sense Stationarity
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