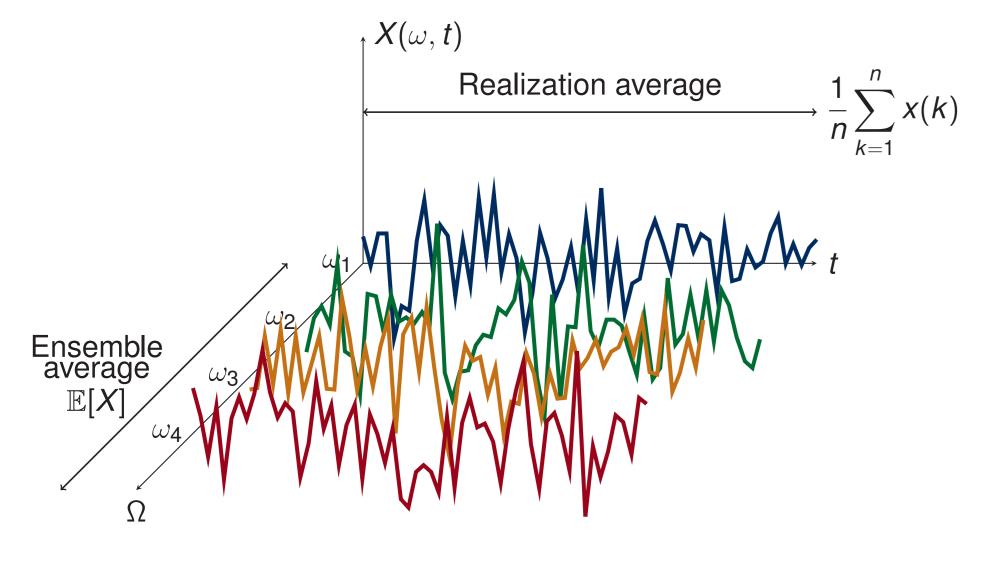
WEAK LAW OF LARGE NUMBERS FOR STATIONARY GRAPH PROCESSES

Stochastic Graph Processes

- Stochastic processes are essential to model random phenomena \Rightarrow Extract useful information from the available (noisy) data
- Stationarity \Rightarrow Conditions on probability distribution of the process \Rightarrow Strict Sense Stationarity (SSS) \Rightarrow Joint distribution
- \Rightarrow Wide Sense Stationarity (WSS) \Rightarrow First, second order moments • Ergodicity \Rightarrow Realization averaging converge to ensemble averaging



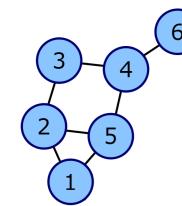
- Regular structure descriptions are insufficient for modern datasets
- \blacktriangleright Networks \Rightarrow Graphs emerge as more accurate representations
- Random phenomena supported on irregular structures ► Wide sense stationary (WSS) graph processes have been defined
- \Rightarrow Power spectral density (PSD) estimation methods

Objective

- Extend notion of ergodicity to WSS graph processes
- \Rightarrow Result reminiscent of weak law of large numbers (WLLN)
- Consistent unbiased estimator by diffusing a single realization
- Optimal design of graph filter that minimizes MSE

Graph signals

- ▶ Weighted graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{W})$ with *n* nodes \Rightarrow Irregular support
- Graph signal $\mathbf{x} \in \mathbb{R}^n \Rightarrow \text{Data value on each node}$
- Graph shift operator $\mathbf{S} \in \mathbb{R}^{n \times n} \Rightarrow$ Captures local structure in \mathcal{G}



$\mathbf{S} =$	(S_{11}	$S_{12} \\ S_{22} \\ S_{23} \\ 0 \\ S_{52}$	0	0	S_{15}	0	\
		S_{21}	S_{22}	S_{23}	0	S_{25}	0	
		0	S_{23}	S_{33}	S_{34}	0	0	
		0	0	S_{43}	S_{44}	S_{45}	S_{46}	
		S_{51}	S_{52}	0	S_{54}	S_{55}	0	
		0	0	0		0		

• Interaction between signal and support \Rightarrow Sx local operation

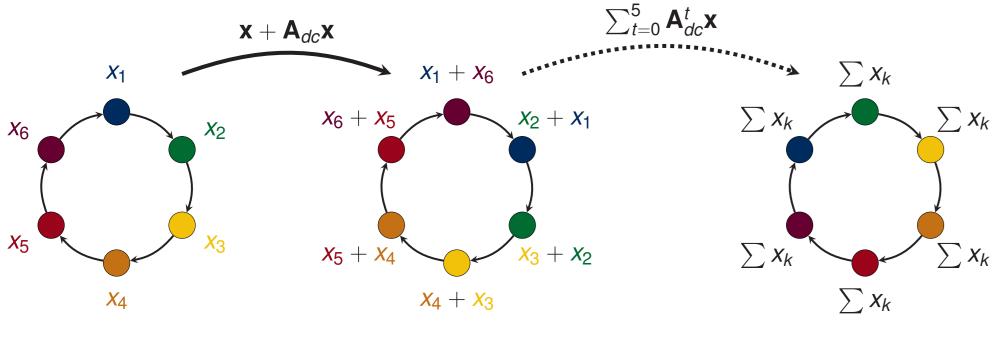
Examples re adjacency matrix A and graph Laplacian L

Discrete-Time Signals

► Sequence of random signal values $\{x_1, \ldots, x_n\} \Rightarrow \mathbb{E}[x_k] = \mu$ Time average is consistent unbiased estimator of the mean

$$\hat{\mu}_n = \frac{1}{n} \sum_{k=1}^n X_k \quad \Rightarrow \quad \mathbb{E}[\hat{\mu}_n] = \mu$$

 \Rightarrow Consistency given by the Law of Large Numbers \Rightarrow Ergodicity

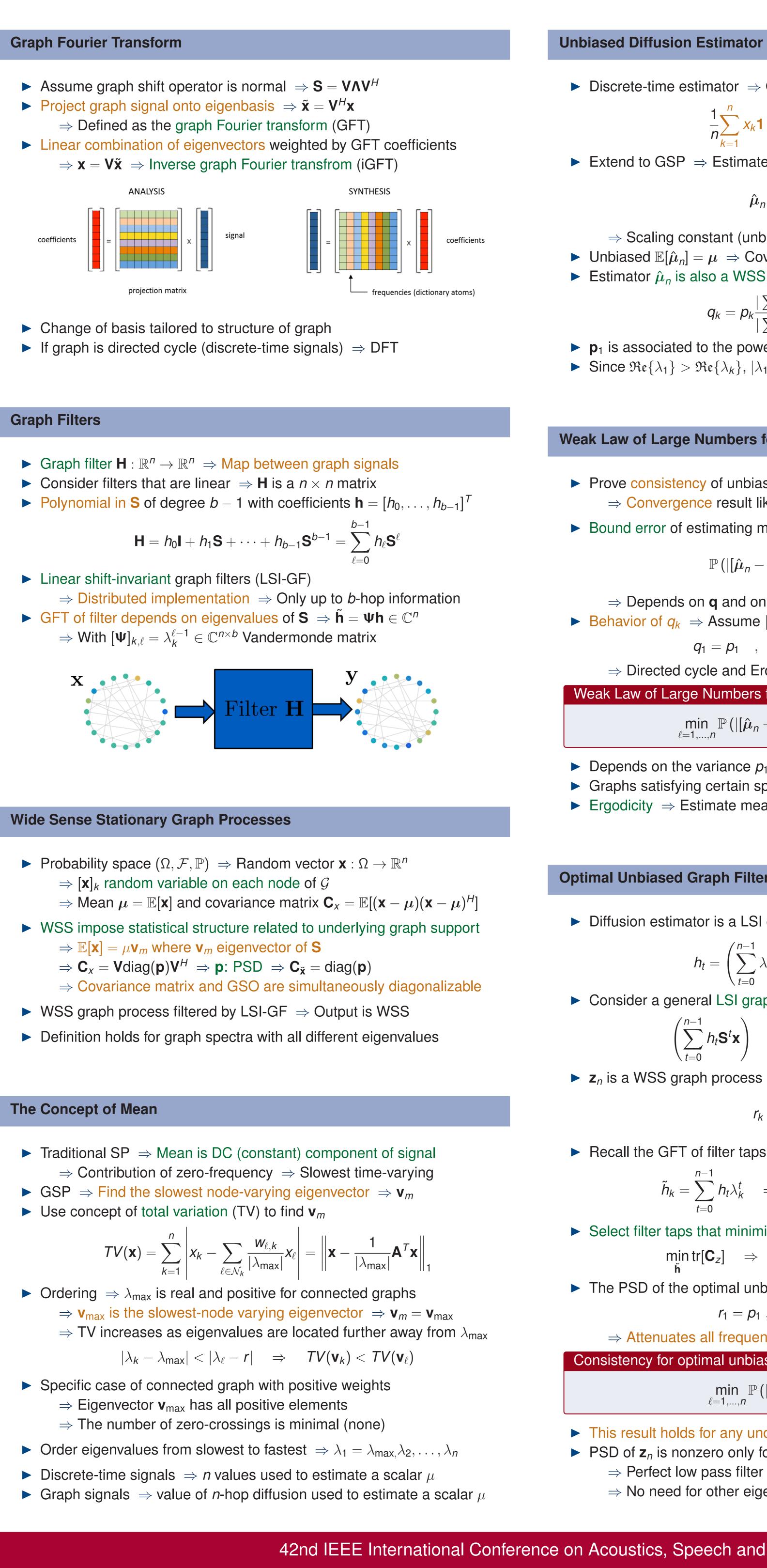


► Model as a graph signal $\Rightarrow \mathcal{G} = \mathcal{G}_{dc} \Rightarrow \mathbf{x} = [x_1, \dots, x_n]^T \Rightarrow \mathbb{E}[\mathbf{x}] = \mu \mathbf{1}$ \blacktriangleright Diffuse signal *n* times \Rightarrow All nodes contain the estimator

$$\frac{1}{n}\sum_{k=1}^{n} x_{k} \mathbf{1} = \frac{1}{n}\sum_{t=0}^{n-1} \mathbf{A}_{dc}^{t} \mathbf{x} = c\sum_{t=0}^{n-1} \mathbf{S}^{t} \mathbf{x}$$

 \Rightarrow Consistent estimator obtained by diffusing a single realization

Fernando Gama[†] and Alejandro Ribeiro[†] E-mail: fgama@seas.upenn.edu [†]Electrical & Systems Engineering, University of Pennsylvania



Discrete-time estimator
$$\Rightarrow$$
 Graph $\mathcal{G} = \mathcal{G}_{ik}$ directed cycle

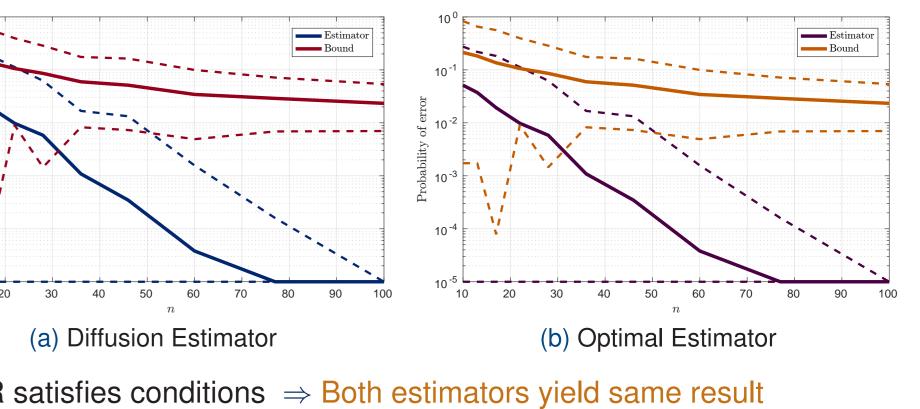
$$\begin{aligned} & \int_{0}^{\infty} \sum_{k=1}^{\infty} a_{k} = \frac{1}{n} \sum_{k=1}^{-1} A_{k}^{(\infty)} x = \frac{1}{n} \sum_{k=1}^{-1} S^{(n)} \\ & \text{Stand to GSP} \Rightarrow Estimato mean from diffusing single realization
$$\begin{aligned} & \mu_{0} = \sum_{k=1}^{-1} \sum_{k=1}^{\infty} A_{k}^{(\infty)} x = \frac{1}{n} \sum_{k=1}^{\infty} S^{(n)} \\ & \Rightarrow Scaling constant (unbiased) \Rightarrow Eligenvalue associated to mean
Unbiased $\mathcal{L}[\mu_{k}] = \mu \rightarrow Ocerations (x, C_{k} = Vdiag(Q)^{M}) \\ & \text{Estimator } \mu_{k} \ also a WSS graph process $\Rightarrow q$: PSD of estimator
 $\mu_{k} = \mu_{k} \sum_{k=1}^{-1} \frac{\lambda_{k}^{(n)}}{\lambda_{k}^{(n)}} + k = 1, \dots, n \\ \\ \mu_{k} \ also a WSS graph process $\Rightarrow q$: PSD of estimator
 $\Rightarrow 0 \ constant (unbiased diffusion estimator
 $\Rightarrow 0 \ constant (unbiased diffusion estimator
 $\Rightarrow 0 \ constant (unbiased fiftusion estimator
 $\Rightarrow 0 \ constant (unbiased Fifty) \ constant (unbiased fiftusion estimator)
 $\Rightarrow 0 \ constant (unbiased Fifty) \ constant (unbiased fiftusion estimator)
 $= 0 \ constant (unbiased Fifty) \ constant (unbiased fiftusion estimator)
 $\Rightarrow 0 \ constant (unbiased Fifty) \ constant (unbiased fiftusion estimator)
 $= 0 \ constant (unbiased Fifty) \ constant (unb$$$$$$$$$$$$$$$$$$

42nd IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2017)

 \Rightarrow No need for other eigenvalues to satisfy any conditions

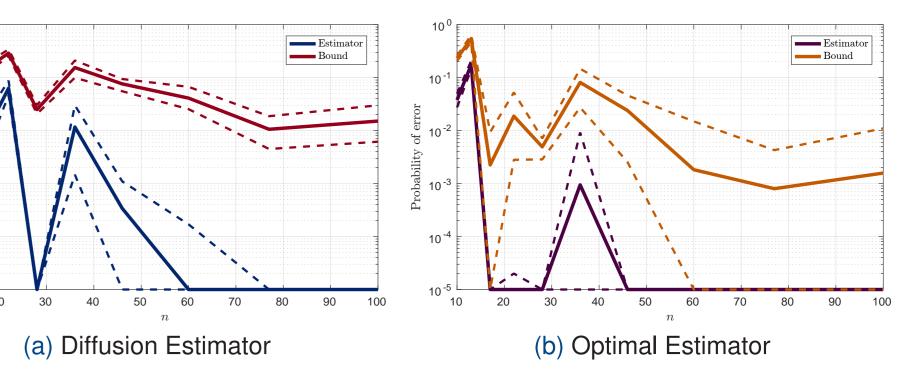
Erdős-Rényi Graphs

nulate 100 ER graphs for each *n* with p = 0.2enerate realization of WSS process \Rightarrow Compute bound timate probability of error out of 10,000 realizations



ance graph

nulate 100 covariance graphs for each $n \Rightarrow$ Gaussian r. v.



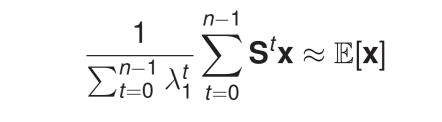
und and probability of error for optimal estimator are lower

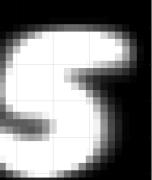
Handwritten digits

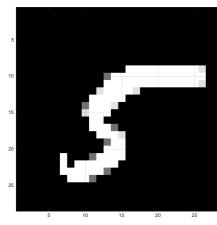
ild covariance graph from a set of 5,000 training samples mple mean obtained from the training set $\{\mathbf{x}_i\}_{i=1}^N$

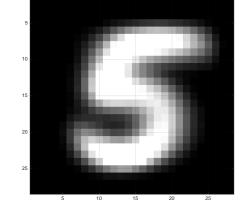
$$rac{1}{N}\sum_{i=1}^{N} \mathbf{x}_i pprox \mathbb{E}[\mathbf{x}]$$

ngle realization $\mathbf{x} \Rightarrow$ Compute unbiased diffusion estimator









(c) Diffusion estimator

Sample average

(b) Single realization

nsider the sample average to be the true mean fusing single image \Rightarrow Resulting image respresents true mean

sions and future work

tained consistent unbiased estimator of the mean \Rightarrow Reminiscent of weak law of large numbers sed on diffusion of a single realization \Rightarrow Ergodicity \Rightarrow Graph ergodicity \Rightarrow Information about $\mathbb{E}[\mathbf{x}]$ is in the graph signed optimal graph filter that minimizes MSE tain a Strong Law of Large Numbers result aracterize ergodicity for all moments \Rightarrow Strict Sense Stationarity

ices

Shuman et al., "The emerging field of signal processing on graphs," IEEE SPM, May 2013. andryhaila and J. Moura, "Discrete signal processing on graphs: Frequency Analysis," IEEE TSP, 2014.

irault et al., "Translation and stationarity for graph signals," Research Report RR-8719, École male Supérieure de Lyon, Inria Rhône-Alpes, Apr. 2015.

. Marques et al., "Stationary graph processes and spectral estimation," *arXiv:1603.04667v1* SY], 14 March 2016.

N. Perraudin and P. Vandergheynst, "Stationary signal processing on graphs," *arXiv:1601.02522v4 [cs.DS]*, 8 July 2016.