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Summary End-to-end ESC system

[0 We proposed an end-to-end environmental sound
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O We analyzed the feature learned with our system, and | (a) Raw feature extraction 50 * Training: random cropping (max amplitude > 0.2)
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extracting a discriminative feature that complements
the log-mel feature

Introduction

O ESC is usually conducted based on spectral features
such as the log-mel feature

[0 These features are designed by humans separately
from other parts of the system
- There could be other effective features of ESC
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EnvNet: End-to-end convolutional neural network

maxpool 40
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for environmental sound classification

Experiments

feature-map

[0 Raw feature extraction (a)

* 1-D convolutional and pooling layers

* Pool2: 40 types of frequency features per 10 ms
O Processing on feature-map (b)

« 2-D convolutional and pooling layers

* Finally, classify sounds with fully connected layers

Analysis on learned feature

O Frequency response of pool2

Q Classification O Dataset: ESC-50 [Piczak, 2015]

/\Dog * Total: 50 classes, 2,000 samples

(1) Feature extraction

pool2 of EnvNet (ours) log-mel feature

g pool2 of EnvNet (ours, sorted)
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Dog  Each sample: monaural, 5 seconds, 44.1 kHz
[0 Evaluation: 5-fold cross-validation
» 1,200 samples for training, 400 for validation, 400 for testing
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O If environmental sounds could be directly learned from

the raw waveform,

* We would be able to extract a new feature representing
information different from the log-mel feature

* This new feature could contribute to the improvement of
classification performance

» Goal: End-to-end ESC system

O Log-mel feature + CNN [Piczak, 2015]
o State-of-the-art method of ESC

O End-to-end speech recognition [Sainath et al., 2015]
» Performance matches the static log-mel feature

O Input length T: 1.5
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O Conv-layers for raw
feature extraction:

2 Iayers with size 8
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Piczak logmel-CNN 64.5
Human 81.3

[0 The accuracy of EnvNet is higher
than static logmel-CNN by 5.1 %

[0 We achieve a state-of-the-art
accuracy by combining EnvNet
and logmel-CNN (averaging)
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If we sort the filters based on
their center frequency, the curve
of the center frequency almost
matches the mel-scale, i.e.,

how humans perceive the sound

« Each of the 40 filters
responds to a particular
frequency area

* Neighboring filters have a
similar frequency response

O EnvNet learns a frequency response which is quite
similar to human perception, but the order of the filters
IS optimized to maximize the classification performance

» We conjecture that is why our EnvNet feature is effective
and has the ability to complement the log-mel feature
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