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Sattva (सत्तत्तव) means Purity



Introduction

• The number of malware is 
increasing!

• In 2014, Kaspersky Lab reported 
they process on average 325,000 
malware per day

• The main reason for such a deluge 
is:
malware mutation: the process of  
creating new malware from existing 
ones
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http://usa.kaspersky.com/about-us/press-center/press-releases/kaspersky-lab-detecting-325000-
new-malicious-files-every-day

http://usa.kaspersky.com/about-us/press-center/press-releases/kaspersky-lab-detecting-325000-new-malicious-files-every-day


Introduction

• Variants are created either by making small changes to the malware 
code or by changing the structure of the code using executable 
packers

• Based on their function, variants are classified into different malware 
families

• Identifying the family of a malware plays an important role in 
understanding and thwarting new attacks
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Examples of malware variants

Variants of Family Alueron.gen!J Variants of Family Fakerean



Problem Statement

• Consider a Malware Dataset comprising of:

• N labelled malware 

• L malware families 

• P malware per family

• Problem is to identify the family of an unknown malware 𝐮
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Related Work

• Static Code analysis based features
• Disassembles the executable code and studies its control flow
• Suffers from obfuscation (packing)

• Dynamic analysis based features
• Executes malware in a virtual environment and studies its behavior
• Time consuming and many recent aware are VM aware

• Statistical and Content based features
• Analyzes statistical patterns based on the malware content
• n-grams, fuzzy hashing, Image similarity based features
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Statistical and Content based Features

• n-grams
• n-grams are computed either on raw bytes or instructions

• n > 1 which makes this computationally expensive

• Fuzzy hashing (ssdeep, pehash)
• Fuzzy hashes are computed on raw bytes or PE parsed data 

• Does not work well on packed malware

• Image similarity
• Malware binaries are converted to digital images

• Image Similarity features (GIST) are computed on the malware

7Malware Images: Visualization and Automatic Classification, L. Nataraj, S.Karthikeyan, G. Jacob, B.S. Manjunath, VizSec 2011
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Image Similarity based Features

• Pros
• Fast and compact

• Better than static code based analysis (works on both packed and unpacked 
malware)

• Comparable with dynamic analysis

• Cons
• Arbitrary column cutting and reshaping

• Images are resized to a small size for normalization which introduces 
interpolation artifacts

• A large malware image, on resizing, lose lots of information
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Approach – Signal Representation

• Let 𝐱 be the signal representation of a malware sample

• Every entry of 𝐱 is a byte value of the sample in the range [0,255]
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Variants in Signal Representation

11Variants of recently exposed Regin malware. Differ only in 7 out of 13,284 (0.0527%)

Variant 1

Variant 2



Approach – Dataset as a Matrix

• Since malware are of different sizes, the vectors are zero padded such 
that all vectors are of length M, the number of bytes in the largest 
malware.

• We now represent the dataset as an 𝑀 ×𝑁 matrix A, where every 
column of A is a malware sample
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Approach – Dataset as a Matrix

• Further, for every family k, (k = 1,2,…,L), we define an M x P block 
matrix 𝐴𝑘:

𝐀𝑘 = [𝐱𝑘1, 𝐱𝑘2, … , 𝐱𝑘𝑃]

• 𝐀 can now be represented as a concatenation of block matrices:

𝐀 = [𝐀1, 𝐀2, … , 𝐀𝐿]
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Approach – Sparse Linear Combination

• Let 𝐮 ∈ R𝑀 be an unknown malware test sample whose family is to 
be determined.

• Then 𝐮 can be represented as a sparse linear combination of the 
training samples:

𝐮 =  

𝑖=1

𝐿

 

𝑗=1

𝑃

𝛼𝑖𝑗𝒙𝑖𝑗 = 𝐀𝜶

where  𝜶 = [𝛼11, 𝛼12, … , 𝛼𝑖𝑗 , … , 𝛼𝐿𝑃]
𝑇 is the coefficient vector
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Approach – Sparse Linear Combination
𝐮 = 𝐀𝜶
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Illustration

• Let the unknown malware belong to family 2

= 𝛼21 + 𝛼22
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𝜶 = [0,0… , 𝛼21, 𝛼22, … , 0,0]𝑇



Approach – Sparse Solution

• Sparsest solution can be obtained by Basis Pursuit by solving the 𝑙1-
norm minimization problem:

 𝜶 = argmin
𝛼′∈R𝑁

||𝜶′||𝟏 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐮 = 𝐀𝜶′

where ||. ||𝟏 represents the 𝑙1-norm
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Approach – Minimal Residue

• To estimate the family of 𝐮, we compute residues for 
every family in the training set and then choose the 
family with minimal residue:

𝑟𝑘 𝐮 = ||𝐮 − 𝐀 
𝒌
( 𝜶) ||𝟐

𝐜 = argmin
𝑘

𝑟𝑘 𝐮

where  𝒌( 𝜶) is the characteristic function that selects 
coefficients from  𝜶 that are associated with family k and 
zeros out the rest, 𝐜 is the index of the estimated family
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Random Projections

• Dimensionality of malware M can be high

• We project all the malware to lower dimensions using Random 
Projections:

𝐰 = 𝐑𝐮 = 𝐑𝐀𝜶

where 𝐑 is a 𝐷 ×𝑀 pseudo random matrix (𝐷 ≪ 𝑀) and 𝐰 is a 𝐷 × 1
lower dimensional vector 
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Sparse Solution

• The system of equations are underdetermined and can be solved 
using 𝑙1-norm minimization:

 𝜶 = argmin
𝛼′∈R𝑁

||𝜶′||𝟏 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐰 = 𝐑𝐀𝜶′
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Modeling Malware Variants

• New variants are created from existing malware samples by making 
small changes and both variants share code

• We model a malware variant as:

𝐮′ = 𝐮 + 𝐞𝐮 = 𝐀𝜶 + 𝐞𝐮

where 𝐮′ is the vector representing malware variant and 𝐞𝐮 is the error 
vector 
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Modeling Malware Variants

• This can be expressed in matrix form as:

𝐮′ = 𝐀 𝐈𝑴
𝜶
𝐞𝐮

= 𝐁𝐮𝐬𝐮

where 𝐁𝐮 = 𝐀 𝐈𝑴 is an 𝑀 × 𝑁 +𝑀 matrix, 𝐈𝑴 is an 𝑀 ×𝑀
Identity matrix,  and 𝐬𝐮 = 𝜶 𝐞𝐮 𝑻

• This ensures that the above system of equations is always 
underdetermined and spare solutions can be obtained
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Sparse Solutions in Lower Dimensions

 𝜶 = argmin
𝛼′∈R𝑁

||𝜶′||𝟏 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐰′ = 𝐁𝐰𝐬𝐰

𝑟𝑘 𝐰′ = ||𝐰′ − 𝐁𝐰𝐬𝐰 
𝒌
( 𝜶) ||𝟐

𝐜 = argmin
𝑘

𝑟𝑘 𝐰′

where 𝐰′ = 𝐰+ 𝒆𝐰 = 𝐑𝐮 + 𝒆𝐰,  𝐁𝐰 = 𝐑𝐀𝜶 𝐈𝑫 is a 𝐷 × 𝑁 + 𝐷
matrix, 𝐈𝑫 is a 𝐷 × 𝐷 Identity matrix  and 𝐬𝐰 = 𝜶 𝐞𝐰 𝑻.
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Experiments

• Two datasets: Malimg and Malheur

• Malimg Dataset: 25 families, 80 samples per family, M = 840,960. 

• Malheur Dataset: 23 families, 20 samples per family, M = 3,364,864.

• Vary Randomly projected dimensions D in {48,96,128,256,512}

• We compare with GIST features of same dimensions

• Two Classification methods: Sparse Representation based 
Classification (SRC) and Nearest Neighbor (NN) Classifier

• 80% Training and 20% Testing
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Results on Malimg Dataset

26

0 50 100 150 200 250 300 350 400 450 500 550
80

85

90

95

100

Dimensions

A
c
c

u
ra

c
y

 

 

RP+NN

GIST+NN

GIST+SRC

RP+SRC



Results on Malimg Dataset

• Best classification accuracy of 92.83% for combination of Random 
Projections (RP) + Sparse Representation based Classification (SRC) at 
D = 512

• Accuracies of GIST features for both classifiers almost the same in the 
range 88% - 90%

• Lowest accuracy for RP + Nearest Neighbor (NN) classifier
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Results on Malheur Dataset

28

0 50 100 150 200 250 300 350 400 450 500 550
80

85

90

95

100

Dimensions

A
c
c

u
ra

c
y

 

 

RP+NN

GIST+NN

GIST+SRC

RP+SRC



Results on Malheur Dataset

• Again, best classification accuracy of 98.66% for combination of 
Random Projections (RP) + Sparse Representation based Classification 
(SRC) at D = 512

• Accuracies of GIST features for both classifiers almost the same at 
around 93%.

• However, the combination of RP + Nearest Neighbor (NN) classifier 
also had high accuracy of 96.06% - Projections Closely Packed
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Comparison with Other Features

Dataset ssdeep GIST 2-grams RP

Malimg Dataset 67.63 89.08 91.75 92.83

Malheur Dataset 81.6 94.21 94.26 98.55
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• Compare with 3 content based features:
• ssdeep (fuzzy hash based feature) 

• GIST 

• 2-grams (2^16 dimensions)



AV Labeling and Low Confidence Samples

• Ground Truth generated by Anti Virus (AV) software labels are not 
consistent

• Often, there are singletons or outliers in a family

• Using Sparse modeling, we show how singletons can be rejected  
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Low Confidence Samples

• Sparsity Coefficient Index (SCI) of a coefficient vector 𝛂 :

𝑆𝐶𝐼(𝛂) = 

𝐿.𝑚𝑎𝑥 ||  𝑖(𝛂)||𝟏
||𝛂||𝟏

−1

𝐿−1

• SCI = 1 Test sample is linear combination of one family

• SCI = 0  Test sample spread across all families

• SCI is a confidence measure and a threshold 𝜏 ∈ 0,1 can be used to 
reject potential low confidence samples.
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Low Confidence Samples

• For both datasets, we fix D = 512 and vary 𝜏

• For the Malimg Dataset, “accuracy” of 100% is achieved at 𝝉 = 𝟎. 𝟓, 
at which 25% of samples are rejected

• For the Malheur Dataset, “accuracy” of 100% is achieved at 𝝉 = 𝟎. 𝟔, 
with only 5% samples rejected
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SCI Threshold for Malheur Dataset
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Orthogonal Matching Pursuit (OMP)

• Basis Pursuit (BP) is computationally expensive

• Orthogonal Matching Pursuit (OMP) is a greedy method which does 
approximate 𝑙1-norm minimization

• Iteratively selects a subset from the training set that are almost 
orthogonal
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Basis Pursuit (BP) vs Orthogonal Matching 
Pursuit (OMP)
• OMP several times faster than BP (18 times for Malimg and 30 times 

for Malheur)

• But Accuracy slightly lesser for both datasets (Tradeoff)
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Dataset BP Accuracy OMP Accuracy BP Comp Time OMP Comp Time

Malimg Dataset 92.83 89.25 420 24

Malheur Dataset 98.55 97.39 180 6



Large Scale Experiments

• Two diverse large scale datasets (no results reported on these)

• Used OMP on both with 80% training and 20% testing

• Offensive Computing Dataset: 
• 2,124 families, 20 samples per family, N = 42,480 and M = 9.3 Mb 
• Many families and fewer samples per family

• Anubis Dataset: 
• 209 behavioral clusters, 176 samples per cluster, N = 36,784, M = 8.1 Mb
• Fewer clusters and more samples per cluster
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Results on Offensive Computing Dataset

• Average Classification Accuracy with 2,124 families = 66.34%

• 927 families had 100% accuracy with SCI value of 0.97

• At an SCI threshold of 0.6, accuracy = 77.08% with 24.78% samples 
rejected

• Overall computation time was 4 hours on a standard desktop without 
parallelization
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Results on Anubis Dataset

• Average Classification Accuracy with 209 clusters = 57.36%

• 27 clusters had 100% accuracy and 50 clusters had > 90% accuracy 
with SCI value of 0.97

• At an SCI threshold of 0.6, accuracy = 77.12% with 34.64% samples 
rejected

• Overall computation time was 3 hours on a standard desktop without 
parallelization
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Discussion

• Accuracies for both datasets are similar (77%) at an SCI threshold of 
0.6

• Computation time depends on both the total number of samples and 
number of classes
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Future Work

• Use Random Projections as Malware Signatures
• Project the full malware and individual sections to lower dimensions and 

represent the malware as bag of randomly projected features 

• Finding the exact source of malware variants
• Use the error model to find the commonalities between variants and also the 

exact positions where they vary
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Conclusion

• We presented a novel method for identifying malware families using a 
combination of Sparse Representation based Classification and 
Random Projections

• We represented the malware binaries as signals, thus opening 
avenues for applying signal processing techniques to analyze malware

• We showed the efficacy and scalability of our method on real large 
malware datasets
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Thank you

Questions?
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