

Constrain the Docile CTUs: an In-Frame Complexity Allocator for HEVC Intra Encoder

A. Mercat^{*}, F. Arrestier^{*}, W. Hamidouche^{*}, M. Pelcat^{*}, D. Menard^{*} * IETR, INSA Rennes

I. Motivations

- High Efficiency Video Coding (HEVC): 40% bitrate savings when compared to the widespread H.264/AVC standard.
- Most frequent approach to reduce the complexity: reduce the optimize coding-tree search.

Contribution: method to efficiently allocate the computational complexity among CTU in a Intra encoded frame: "Constrain the Docile CTUs" (CDC).

II. Correlation between a CUTs partitioning depths and its RD-Cost

Depths metric: quantify the partitioning depths of each CTU

$$D_{p,x,y} = \sum_{x \in [1,N_{p,x,y}]} d$$

High correlation between the RD-Cost and the depth metric.

Correlation coefficient between the CTU depth metric and

III. Impacts of a CTU constraint on the RD-Cost

□ Absolute RD-cost per CTU of the first frame of BQTerrace(1080p)

- Red blocks: the 20% of the CTUs with the lowest RD–Costs.
- Black blocks: the 20% of the CTU with the highest RD–Costs. •

the RD–Cost

IV. Temporal RD–Cost stability

Average correlation coefficient of CTU RD-Costs of consecutive frames

	QP22	QP27	QP32	QP37	QP42	Av.
Class A	0.991	0.989	0.987	0.985	0.983	0.987
Class B	0.988	0.987	0.986	0.985	0.985	0.986
Class C	0.986	0.986	0.986	0.985	0.985	0.986
Class D	0.985	0.985	0.985	0.985	0.985	0.985
Class E	0.986	0.986	0.986	0.986	0.986	0.986
Class F	0.971	0.959	0.958	0.958	0.960	0.961
Average	0.985	0.982	0.981	0.981	0.981	0.982

first frame of BQTerrace(1080p)

The constraint: remove the last depth of the quad-tree. •

> CTUs with lowest RD-Cost have less increase of bit rates and/or distortion than CTUs with high RD-cost when constrained.

V. The CDC Complexity Allocator

- High correlation between RD-Cost on consecutive frames of a video sequence.
- \succ Use the RD–Cost of the previous frame to predict the RD–Cost of the current one.

VI. Experimental Results

- \geq CDC allocator evaluation: BD-rate between the CDC and four methods of allocating when the constraint is to remove the last depth level in the RDO process:
- **Upper**: the first CTUs in the raster scan order of the frame are constrained.
- **Lower**: the last CTUs in the raster scan order of the frame are constrained.
- **Tick**: every CTU out a percentage is constrained.
- **Inverse**: the exact inverse of our allocator method, i.e. the CTUs with the highest RD–Cost in the previous frame are constrained.

Proposed in frame complexity allocator: Constrain the Docile CTUs (CDC)

- When CTUs have to be constrained, apply the constraint on CTUs with the lowest RD–Costs of the previous frame.
- Can be adapted to different CTU complexity reduction techniques.
- \geq "Constrain the Docile CTUs": consists of reducing the encoding effort for the CTUs that lend themselves the most to encoding.

□ BD-rate between our allocator (CDC) and four others (in %)

	Upper		Lower		Tick			Inverse				
Class	30%	50%	70%	30%	50%	70%	30%	50%	70%	30%	50%	70%
Class A	0.72	1.06	1.13	0.57	0.99	0.98	1.03	1.17	1.15	1.88	2.16	1.74
Class B	0.61	0.92	0.82	1.02	1.23	1.23	1.06	1.21	1.24	1.98	2.23	1.86
Class C	0.83	1.25	1.32	2.03	2.48	2.52	1.93	2.13	2.25	3.33	3.75	3.20
Class D	1.19	2.18	2.34	2.12	2.60	2.98	2.35	2.50	2.42	3.50	4.07	3.46
Class E	1.26	2.11	2.67	2.45	3.77	3.86	2.40	3.03	3.75	5.30	5.93	5.07
Class F	8.82	12.34	12.97	8.55	12.58	12.63	10.63	13.29	14.56	22.55	25.53	20.97
Average	2.24	3.31	3.54	2.79	3.94	4.03	3.23	3.89	4.23	6.42	7.28	6.05

Supported by the French ANR ARTEFaCT project, by COVIBE project funded by Brittany region and by the European Celtic-Plus project 4KREPROSYS.

