
DNN-Based Feature Enhancement Using DOA-Constrained ICA  

for Robust Speech Recognition  
 

 Ho-Yong Lee, Ji-Won Cho, Minook Kim, and Hyung-Min Park  

Department of Electronic Engineering, Sogang University, Seoul, Republic of Korea  

hpark@sogang.ac.kr  

 Abstract 

Recently, deep-neural-network(DNN)-based speech feature enhancement (FE) approaches have 

attracted much attention owing to their powerful modeling capabilities. However, DNN-based 

approaches are unable to achieve remarkable performance improvements for speech with severe 

distortion in the test environments different from training environments. We propose a DNN-

based FE method where the DNN inputs include pre-enhanced spectral features computed from 

multi-channel input signals to reconstruct noise-robust features. The pre-enhanced spectral 

features are obtained by direction-of-arrival(DOA)-constrained independent component analysis 

(DCICA) followed by Bayesian FE using a hidden-Markov-model(HMM) prior, to exploit the 

capabilities of efficient online target speech extraction and efficient FE with prior information 

for robust ASR. In addition, noise spectral features computed from DCICA are included for 

further improvement. Therefore, the DNN is trained to reconstruct a clean spectral feature vector, 

from a sequence of corrupted input feature vectors in addition to the corresponding pre-enhanced 

and noise feature vectors. Experimental results demonstrate that the proposed method 

significantly improves recognition performance, even in mismatched noise conditions. 

Introduction 

Robust automatic speech recognition (ASR) 

• The performance of most ASR systems is seriously degraded owing to differences between 

training and testing environments. 

• Although many algorithms have been proposed to compensate for the mismatch under 

specific conditions, most of them frequently fail to attain high-recognition performances in 

real-world environments with various noises. 
 

Deep learning 

• Recently emerged as a breakthrough for acoustic modeling. 

• Applied to speech enhancement or preprocessing for robust ASR. 

• Denoising autoencoder to reconstruct a clean speech signal from a noisy input. 

• One common problem of DNN-based algorithms 

• Degraded in mismatched noise conditions. 

• Multicondition training including many different noise types in the training set. 

• Noise-aware training (NAT) including estimated noise information in DNN inputs. 

• DNN-based binary mask estimation in the time-frequency domain by training in a 

wide range of acoustic environments : extended to ratio mask estimation. 

• Various feature combinations based on mask estimation using multichannel inputs. 
 

Proposed method 

• DNN-based feature enhancement (FE) method using multichannel inputs for robust ASR. 

• FE of logarithmic mel-frequency power spectral coefficients (LMPSCs) for efficiency. 

• DNN is trained to reconstruct a clean-speech-feature vector, from a sequence of corrupted 

input feature vectors in addition to the corresponding preenhanced-speech- and estimated-

noise-feature vectors. 

• Preenhanced spectral features by direction-of-arrival(DOA)-constrained independent 

component analysis (DCICA) followed by Bayesian FE based on a hidden-Markov-

model(HMM) prior. 

• Noise spectral features computed from DCICA. 

Experimental Evaluation 

Task and implementation 

• DARPA resource management database (training set: 3990 sentences, test set: 300 sentences). 

• Fully continuous HMM acoustic models and the 39th-order MFCCs. 

• 128-state HMM prior model for Bayesian FE. 

• Test utterance corrupted by (Case 1) babble noise or (Case 2) competing speech from the 

TIMIT database. 

• Noisy speech samples to train DNNs for FE : the training set. 

• Case 1  

• Babble noise in matched noise              

condition. 

• Car, F16, factory, and operations room                  

noises in mismatched noise condition. 

• Case 2 

• Randomly chosen from the resource        

management database. 

• Two microphone signals simulated by the image                

method in a room with a RT60 of 0.3 s. 
 

Experimental results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<Results of enhanced by median filtering> 

Conclusion 

DNN-based FE method for robust ASR 

• DNN inputs included LMPSCs preenhanced by DCICA-FE and noise LMPSCs. 

• Significantly improved the recognition performance even in mismatched noise conditions. 

• Evaluation on real data needs to be studied in the future. 

DCICA-FE of Corrupted Speech 

DCICA 

• Efficient online target speech extraction without any permutation problem. 

• Dummy outputs : noise estimation by canceling a target speech signal by 

 

 

 

• Target speech output estimated by minimizing the         

dependency between       and        . 

 

 

 

 

 

 

 

 

 

 

 

 

Bayesian FE 

• Bayesian inference to estimate clean features. 

• Target speech output employed as noisy speech to be processed for further enhancement. 

• Applying the kth band mel-scale filter on           , the LMPSC 

 

• Bayesian FE accomplished by the MMSE estimate  

 

• Prior model 

• An LMPSC of the noise       is assumed to be a Gaussian random process. 

• An LMPSC of clean speech     is assumed to be described by an ergodic HMM with 

the single-Gaussian observation. 

Spectral FE Based on DNN 

DNN-based FE 

• Recently used as a regression function for mapping noisy speech LMPSCs to clean ones.  

• Highly useful because DNN can capture acoustic information along the time or frequency 

axis simultaneously by using a sequence of seven feature vectors of 24 LMPSCs. 

• Tends to degrade in unseen noise environments even with multicondition training. 

• Features enhanced by DCICA-FE may be helpful because DCICA-FE does not suffer from 

performance degradation due to unseen noise corruption. 

• Noise spectral features computed from DCICA used as additional inputs to the DNN for 

further improvement. 

• DNN  

• Three hidden layers with 1024 units per layer. 

• Activation functions: sigmoid for hidden units and linear functions for output units. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

        < Structure of the DNN training for FE >     < Overall procedure of the proposed method > 

DOA-Constrained ICA 

Mic. Mic. 

STFT STFT 

Scaling 

LMPSC LMPSC LMPSC LMPSC 

Bayesian 

FE 

DNN-Based FE 

1

, jiX
2

, jiX

kix ,

kis ,
ˆ

kin ,


kin ,

2

, jiU
jiY ,

kiy ,

kis ,

Target 

source θtarget 

d 
0 

… Mic. 1 Mic. 2 
Mic. m Mic. M 

… 

.,2,   ,
sin)1(

exp 1

,

target

,, MmX
c

md
jXU jij

m

ji

m

ji 






 






m

jiU ,jiY ,

. )(  ,  ,)(  ,)(
sin)1(

exp  
)(

,

2

,,

2

target

,

,

















 

 



 M

jiji

m

ji

M

m

j

ji

ji

j UUU
c

md
j

Y








w

)].exp()log[exp( ,,, kikiki nsy 

2

, || jiY

].|[]|)ˆ[(minargˆ
:1:1

2

ˆ
iiiiii EE

i

ysysss
s



Frame

C
ha

nn
el

50 100 150 200 250 300 350 400

5

10

15

20

Frame

C
ha

nn
el

50 100 150 200 250 300 350 400

5

10

15

20

Frame

C
ha

nn
el

50 100 150 200 250 300 350 400

5

10

15

20

Frame

C
ha

nn
el

50 100 150 200 250 300 350 400

5

10

15

20

Input layer 

Output layer 

Hidden layer 

Hidden layer 

Hidden layer 

Clean 

LMPSC 

Estimated 

Noise 

LMPSC 

Enhanced  

LMPSC 

Corrupted 

LMPSC 

kin ,

kis ,

Interference 1 

- Height: 1 m 

- Azimuth: -45° 

Room height: 3 m 

Target speech 

- Height: 1 m 

- Azimuth: 30° 
- Height: 1 m 

- Gap: 16 cm 

Microphones 

Mic.1 

Mic.2 
2.5 m 

1.5 m 

5 m 

I2 

I1 

1 m 

T 

4 m 

- Height: 1 m 

- Azimuth: 60° 

Interference 2 

One interference Two interferences 

Case 1 

Case 2 

Selected References 

[1] J.-W. Cho and H.-M. Park, “Independent vector analysis followed by HMM-based feature enhancement for                                                                         

robust speech recognition,” Signal Process., vol. 120, pp. 200–208, 2016. 

[2] M. Kim and H.-M. Park, “Efficient online target speech extraction using DOA-constrained independent 

component analysis of stereo data for robust speech recognition,” Signal Process., vol. 117, pp. 126–137, 2015. 

0

10

20

30

40

50

60

70

80

90

100

W
o

rd
 a

cc
u

ra
cy

 (
%

) 

0 5

10 15

 Input SNR (dB) 

0

10

20

30

40

50

60

70

80

90

100

W
o

rd
 a

cc
u

ra
cy

 (
%

) 

0 5

10 15

 Input SNR (dB) 

0

10

20

30

40

50

60

70

80

90

100

Baseline DCICA-FE Conv. DNN DNN-NAT DNN-IDUET DNN-BF-SM Prop.
Method

W
o

rd
 a

cc
u

ra
cy

 (
%

) 

0 5

10 15
0

10

20

30

40

50

60

70

80

90

100

Baseline DCICA-FE Conv. DNN DNN-NAT DNN-IDUET DNN-BF-SM Prop.
Method

W
o

rd
 a

cc
u

ra
cy

 (
%

) 

0 5

10 15

 Input SNR (dB)  Input SNR (dB) 


