MEMORY VISUALIZATION FOR GATED RECURRENT NEURAL NETWORKS IN SPEECH RECOGNITION

Zhiyuan Tang, Ying Shi, Dong Wang, Yang Feng, Shiyue Zhang

Center for Speech and Language Technologies (CSLT), Tsinghua University

4. filtered



Abstract

- -- Visualizing the behavior of LSTM and GRU when performing speech recognition tasks:
- 1. Activation patterns
- 2. Temporal trace
- 3. Memory robustness
- -- Modifications inspired by the visualization:
- 1. lazy cell update in LSTM
- 2. shortcut connections for residual learning

LSTM & GRU

$$i_{t} = \sigma(W_{ix}x_{t} + W_{im}m_{t-1} + V_{ic}c_{t-1})$$

$$f_{t} = \sigma(W_{fx}x_{t} + W_{fm}m_{t-1} + V_{fc}c_{t-1})$$

$$c_{t} = f_{t} \odot c_{t-1} + i_{t} \odot g(W_{cx}x_{t} + W_{cm}m_{t-1})$$

$$o_{t} = \sigma(W_{ox}x_{t} + W_{om}m_{t-1} + V_{oc}c_{t})$$

$$m_{t} = o_{t} \odot h(c_{t}).$$

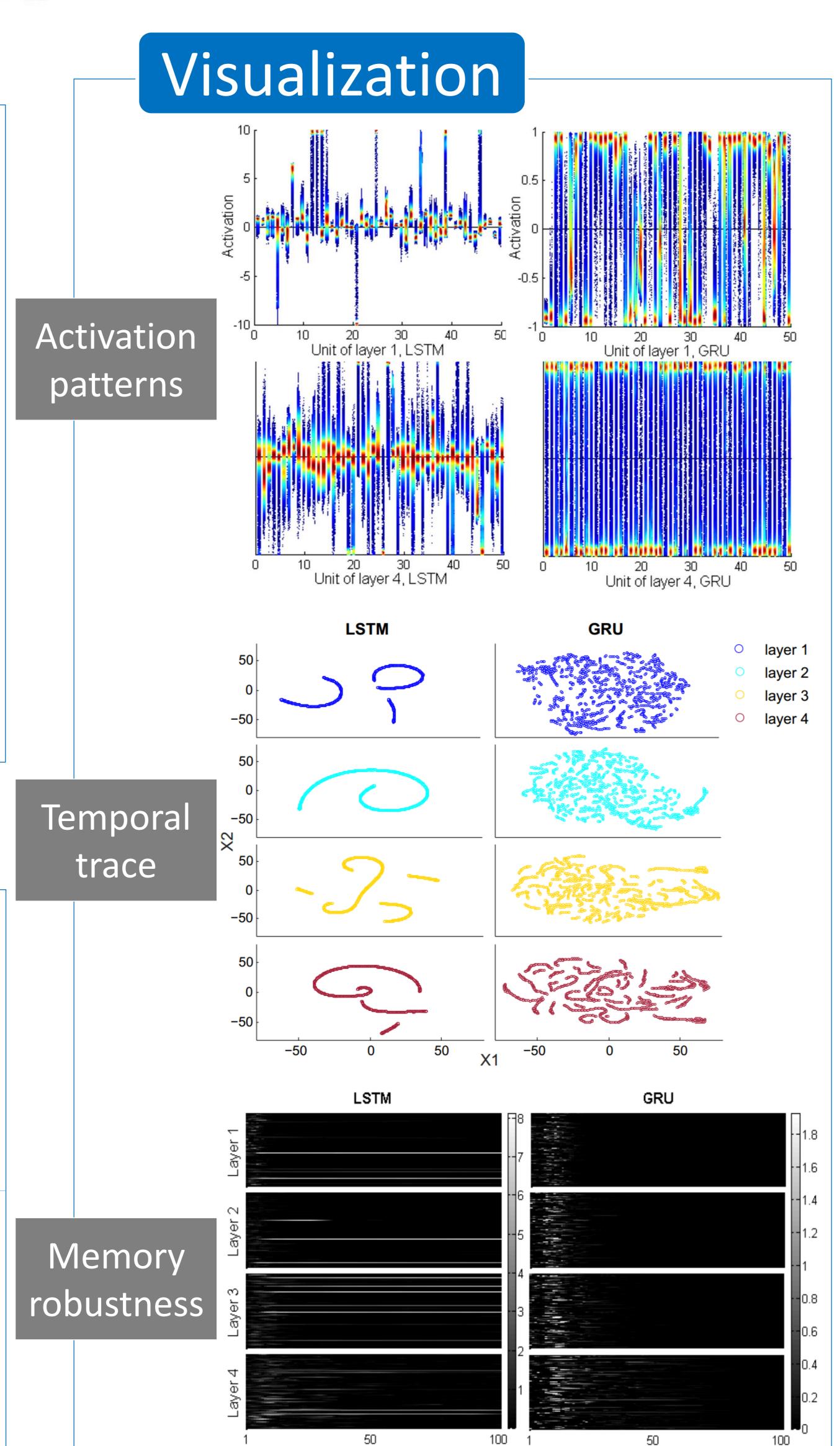
$$i_t = \sigma(W_{ix}x_t + W_{ic}c_{t-1})$$

$$(f_t) = 1 - i_t$$

$$o_t = \sigma(W_{ox}x_t + W_{oc}c_{t-1})$$

 $m_t = o_t \odot c_{t-1}$

 $(c_t) = f_t \odot c_{t-1} + i_t \odot g(W_{cx}x_t + W_{cm}m_t).$



Vanilla LSTM 1*. input gate 1. forget gate 1. forget gate 1. output gate

LSTM/GRU

Memory cells

- (a) Lazy cell update: GRU updates cells at the final step, while LSTM updates cells before computing output gates.
- (b) Shortcut connection for residual learning: gates at high-level layers show a similar pattern, cells in high-level layers are mostly learned by residual.

Experiment set

3. renewed

Number indicates

the order of computation.

Date: WSJ database GMMs: MFCC, 3377 pdfs

RNNs: Fbank

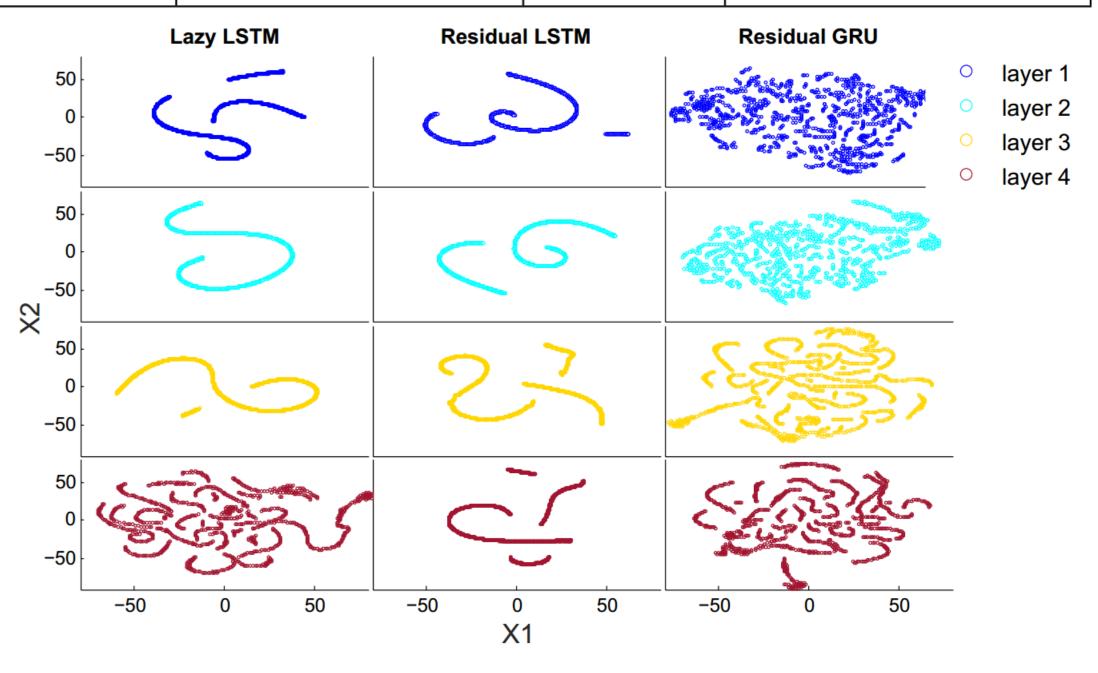
LSTM/GRU, 512 cells

1/2/4/6 layers

Experiment Results

	WER%	
Recurrent Layers	Baseline	Lazy Update
1	10.96	10.18
2	9.97	9.48
4	9.67	9.10

		WER%	
System	Recurrent Layers	Baseline	Residual Learning
LSTM	4	9.67	9.53
	6	9.47	9.33
GRU	4	9.32	9.23
	6	9.32	9.10



Conclusions

- -- LSTM and GRU use different ways to encode information and the information in GRU is more distributed. LSTM possesses a long-term memory but it is also noise-sensitive.
- -- Inspired by these observations, we introduced two modifications to enhance gated RNNs: lazy cell update and short connections for residual learning, and both provide interesting performance improvement.