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Introduction

I Real life auditory scenes have many overlapping sound events,
making it hard to recognize with just mono channel audio.

I We propose to train the SED systems to learn spatial information
from binaural audio in order to distinguish overlapping sounds
events be�er.
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Convolutional bi-directional recurrent neural network (CBRNN)
architecture for multichannel audio feature.

Spatial features

I Interaural intensity di�erence (IID)

. Spatially separated sound events have di�erent intensities in
the binaural channels.

. Represented using 40 log mel-band energies extracted from
each of the binaural channels (mel).

I Interaural time di�erence (ITD)

. Spatially separated sound events have di�erent time di�erence
of arrival (TDOA) values. Furthermore, temporally overlapping
sound events do not always have the same frequency spread.

I High level feature : TDOA - picked in five mel-bands.
I Low level feature : Generalized cross-correlation with phase

based weighting (GCC-PHAT ) - single band.

I Perceptual feature

. Overlapping sound events do not always have the same
dominant frequencies.

I dom-freq - Top three dominant frequencies and their
magnitudes in 100-4000 Hz range.

I ACR - auto-correlation magnitudes in 107.5-4410 Hz range.

Dataset

TUT-SED 2009
I Ten contexts - beach, o�ice, restaurant, basketball, street etc.

I 9-16 classes and 8-14 recordings varying from 10-30 minutes for
each context.

I Classes like cheering, applause, bird, laughter, music etc.

I Sum length of 19 hours.

TUT-SED 2016
I Development set of publicly available TUT-SED 2016 database.

I Two contexts - home (10 clips with 11 classes) and residential
area (12 clips with 7 classes).

I Classes like cutlery, water tap running, wind blowing etc.

I Sum length of around an hour.

Both datasets consisted of audio recordings collected using in-ear
microphones. All tests were done in context-independent manner.

Results

I Error rate (ER) and F-score achieved using binaural spatial
features and CBRNN on TUT-SED 2009 and 2016 datasets.

Feature combination
TUT-SED 2009 TUT-SED 2016
ER F ER F

CRNN baseline [Cakir 2017] 0.49 68.8 0.93 31.3
mel-monaural 0.49 68.0 1.03 29.7
mel-concat 0.44 70.3
mel 0.43 71.1 0.99 32.3
mel + TDOA 0.45 70.9 0.95 35.8
mel + GCC-PHAT 0.44 71.1 0.95 34.6
mel + dom-freq 0.43 71.7 0.98 32.8
mel + ACR 0.44 71.2 0.98 33.8
mel + TDOA + dom-freq 0.44 71.0 1.01 33.3
mel + GCC-PHAT + ACR 0.45 70.9 0.99 33.6

I By using binaural over monaural features, F-score improved by
2.7% for TUT-SED 2009 and 6.1% for TUT-SED 2016.

I Comparable performance of using GCC-PHAT instead of TDOA
or ACR instead of dom-freq shows that network learns equivalent
high-level features information from just the low-level features.

I Other observations

. dom-freq / ACR and mel useful for indoor and sound intense
contexts (bus, hallway, o�ice, and basketball)

. TDOA / GCC-PHAT and mel are seen to help in outdoor
contexts (beach and street).

Conclusions

I Binaural spatial features was shown to recognize sound events
be�er than monaural features.

I Network architecture proposed to handle multiple feature
classes and easily scalable to multichannels.

I Network was shown to learn high-level equivalent information
from simple low-level features.
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