Sound Event Detection Using Spatial Features and Convolutional Recurrent Neural Network Sharath Adavanne, Pasi Pertilä, Tuomas Virtanen

Department of Signal Processing, Tampere University of Technology, Finland

Introduction

- Real life auditory scenes have many overlapping sound events, making it hard to recognize with just mono channel audio.
- We propose to train the SED systems to learn spatial information from binaural audio in order to distinguish overlapping sounds events better.

Dataset

TUT-SED 2009

- Ten contexts beach, office, restaurant, basketball, street etc.
- 9-16 classes and 8-14 recordings varying from 10-30 minutes for each context.
- Classes like cheering, applause, bird, laughter, music etc.

Generalized cross-correlation (Tx60x3) Log mel-band energy (Tx40x2) Auto-correlation (Tx400x2									
100 3x3	00 3x3 filters, 2D CNN, ReLUs 1x3 max pool			CNN, ReLUs pool	100 3x3 filters, 2D CNN, ReLUs 1x10 max pool				
100 3x3	3 filters, 2D CNN, ReLUs 1x2 max pool	100 3x3 filters, 2D CNN, ReLUs 1x2 max pool		100 3x3 filters, 2D CNN, ReLUs 1x4 max pool					
100 3x3	3 filters, 2D CNN, ReLUs 1x2 max pool	100 3x3 filters, 2D CNN, ReLUs 1x2 max pool		100 3x3 filters, 2D CNN, ReLUs 1x2 max pool					
	Tx5x100		Tx5x100		Tx5x100	,			
	Merge by concatenation								
	100, LSTM, tanh, for	vard 100, LSTN		٨, tanh, backward					
	↓	•							
	Merge by concatenation								
	\bullet								
	100, LSTM, tanh, for		rd						
		↓ ↓							
	Merge by concatenation								

Sum length of 19 hours.

TUT-SED 2016

- Development set of publicly available TUT-SED 2016 database.
- Two contexts home (10 clips with 11 classes) and residential area (12 clips with 7 classes).
- Classes like cutlery, water tap running, wind blowing etc.
- Sum length of around an hour.

Both datasets consisted of audio recordings collected using in-ear microphones. All tests were done in context-independent manner.

Results

Error rate (ER) and F-score achieved using binaural spatial features and CBRNN on TUT-SED 2009 and 2016 datasets.

Eastura combination	TUT-SED 2009		TUT-SED 2016	
reature compination	ER	F	ER	F
CRNN baseline [Cakir 2017]	0.49	68.8	0.93	31.3
mel-monaural	0.49	68.0	1.03	29.7
mel-concat	0.44	70.3		
mel	0.43	71.1	0.99	32.3
mel + TDOA	0.45	70.9	0.95	35.8
mel + GCC-PHAT	0.44	71.1	0.95	34.6
mel + dom-freq	0.43	71.7	0.98	32.8
mel + ACR	0.44	71.2	0.98	33.8
mel + TDOA + dom-freq	0.44	71.0	1.01	33.3
mel + GCC-PHAT + ACR	0.45	70.9	0.99	33.6

Convolutional bi-directional recurrent neural network (CBRNN) architecture for multichannel audio feature.

Spatial features

- Interaural intensity difference (IID)
 - Spatially separated sound events have different intensities in the binaural channels.
 - Represented using 40 log mel-band energies extracted from each of the binaural channels (*mel*).
- Interaural time difference (ITD)

http://www.cs.tut.fi/~adavanne/

Spatially separated sound events have different time difference of arrival (*TDOA*) values. Furthermore, temporally overlapping sound events do not always have the same frequency spread.

- By using binaural over monaural features, F-score improved by 2.7% for TUT-SED 2009 and 6.1% for TUT-SED 2016.
- Comparable performance of using GCC-PHAT instead of TDOA or ACR instead of dom-freq shows that network learns equivalent high-level features information from just the low-level features.
- Other observations
 - *dom-freq / ACR* and *mel* useful for indoor and sound intense contexts (bus, hallway, office, and basketball)
 - ▶ *TDOA / GCC-PHAT* and *mel* are seen to help in outdoor

- ► High level feature : *TDOA* picked in five mel-bands.
- Low level feature : Generalized cross-correlation with phase based weighting (GCC-PHAT) - single band.
- Perceptual feature
 - Overlapping sound events do not always have the same dominant frequencies.
 - *dom-freq* Top three dominant frequencies and their magnitudes in 100-4000 Hz range.
 - ► ACR auto-correlation magnitudes in 107.5-4410 Hz range.

contexts (beach and street).

Conclusions

- Binaural spatial features was shown to recognize sound events better than monaural features.
- Network architecture proposed to handle multiple feature classes and easily scalable to multichannels.
- Network was shown to learn high-level equivalent information from simple low-level features.

sharath.adavanne@tut.fi