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INTRODUCTION

•Goal: recover a low-rank matrix, X , from magnitude-only
observations of random linear projections of its columns

•Contributions:
1 AltMinTrunc that exploits low-rank structure of X
2 high probability sample complexity bounds for AltMinTrunc initialization

•Problem Definition
• Instead of a single vector x, we have a set of q vectors, x1,x2, . . . ,xq which
are such that the n× q matrixX := [x1,x2, . . . ,xq] has rank r � min(n, q)

• For each xk, there are a set of m measurements of the form
yi,k := (ai,k′xk)2, i = 1, 2, . . .m, k = 1, 2, . . . , q

EXPERIMENT RESULTS

Original AMT TWFp TWF

m = 8n m = 0.8n m = 0.6n

q = 100 q = 1000
m AMT TWF TWFp AMT TWF TWFp
10 1.32 1.62 1.00 0.46 1.62 0.73
50 0.53 1.48 0.77 0.11 1.48 0.57

EXPERIMENT DETAILS

•Plane Video Results
• Shows frames 1 and 104 of original, and recovered videos of AltMinTrunc,
TWF-proj and TWF
• Settings: m = 3n CDP measurements, r = 25, frame sizes: 240× 320, total frames:
q = 105

•Graphs
• For each iteration, plot shows the error at iteration t against the time taken
until iteration t
• Settings: noise-free complex Gaussian, n = 100, r = 2,q = 1000

• Table : Initialization error comparison
• Settings are n = 100, r = 2, bk ∼ N (0, I)

COMPLETE ALGORITHM

• Initialization
• Compute Û as top r eigenvectors of

YU := 1
mq

∑
i
∑

k yi,kai,kai,k
′1
{yi,k≤9

∑
i yi,k
m }

• For each k = 1, 2, . . . , q,
• Compute v̂k as the top eigenvector of Yb,k := Û′MkÛ where Mk := 1

m
∑

i yi,kai,kai,k
′

• Compute ŋ̂k :=
√

1
m

∑
i yi,k; set b̂k = ĝk = v̂kŋ̂k and x̂k := Û ĝk

•Loop Iterations
• For t = 1 to T , repeat the following three steps:

1 for all k = 1, 2, . . . , q, Ĉk ← diag(phase(A′kÛ b̂k))
2 Û ← arg minŨ

∑
k ‖Ĉk

√
yk −Ak

′Ũ b̂k‖2

3 for all k = 1, 2, . . . , q, b̂k ← arg minb̃k ‖Ĉk
√
yk −Ak

′Û b̃k‖2

Output x̂k = Û b̂k’s for all k = 1, 2, . . . , q
Steps 2 and 3 involve solving a LS problem

ALGORITHM DERIVATION

•X : rank r =⇒ can be written as X = UB
•U is an n× r matrix with mutually orthonormal columns
•B = [b1, b2, . . . bq] is an r × q matrix independent of U

•Let 1
qXX

′ = 1
q

∑q
k=1xkxk

′ EVD= UΛU ′ denote the reduced
eigenvalue decomposition (EVD) of XX ′/q

Compute Û:
•Define YU,0 := 1

mq

∑m
i=1

∑q
k=1 yi,kai,kai,k

′

• It is not hard to see that E[YU,0|U ] = 2UΛU ′ + trace(Λ)I
•The subspace spanned by top r eigenvectors of above matrix is

range(U ) and the gap between its r-th and (r + 1)-th eigenvalue
is 2λmin(Λ)

• If m and q are large enough, L.L.N =⇒ YU,0 ≈ E[YU,0]
• So by sin θ theorem (Davis-Kahan’71), the span of top r eigenvectors of YU,0
is close to span of U

•Let wi,k = √yikai,k; wi,k is heavy-tailed
• More samples are needed for law of large numbers to take effect
• Solution : truncating wi,k’s

•Compute Û as the top r eigenvectors of YU
Compute b̂′ks:
• If Û indep ofMk, then E[Yb,k|Û ] = 2gkgk′ + ‖xk‖2I , and
gk = Û ′Ubk

•Top eigenvector of this expectation is proportional to gk and the
gap between its first and second eigenvalues is
2‖gk‖2 = 2‖Û ′Ubk‖2

• If Û ≈ U , then ‖gk| ≈ ‖bk‖ and Ûgk ≈ Ubk
• If Û ≈ U and m is large enough, then top eigenvector of Yb,k is a
good approximation of bk

Compute b̂k as the top eigenvector of Yb,k and scale it

THEOREM

•Assume X = UB and B independent of U
•Let Λ̄ := 1

q

∑
k bkbk

′, λ̄max its maximum eigenvalue and κ
condition number

•For each xk, k = 1, 2, . . . , q, we observe

•m measurements yi,k := (ai,k′xk)2 with ai,k iid∼ N (0, I)
• m̃ measurements ynewi,k := (anewi

′xk)2 with anewi
iid∼ N (0, I), and with anewi ’s

independent of ai,k’s

•Suppose that r ≤ cn1/5 and q ≤ cn2

•For an ε < 1, if

m̃ ≥ c
√
n

ε2 , m ≥ cκ2r4(log n)(log m̃)2

ε2 ,

mq ≥ cκ2nr4(log m̃)2

ε2 ,

•With probability at least 1− c
n2,

1 SE(Û ,U ) := ‖(I − ÛÛ ′)U‖ ≤ cε
r log m̃;

2 NormErr(X, X̂) :=
∑q

k=1 dist(xk,x̂k)2∑q
k=1 ‖xk‖2 ≤ cε

DISCUSSION

• If r = c log n and q = cn, we only need m + m̃ ≥ c
√

n, in
comparison with at least cn which is needed by single
vector PR methods

• c
√
n can be replaced by cn1/d for any d ≥ 2 also

•To just recover U with SE(Û ,U ) ≤ cε, we need only mq = cnr2

measurements
•when r is small, this is only a little more than the
minimum required, nr

Contact Information

•Code is available at the following link:
http://www.ece.iastate.edu/ s̃arana
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http://www.ece.iastate.edu/ ~ sarana
mailto:sarana@iastate.edu
mailto:namrata@iastate.edu
mailto:yonina@ee.technion.ac.il

