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Abstract

 Dictionary method for compression is considered.
 Instead of sparse or energy-compact representation (PCA),

a data driven basis for compression purpose should work
better.

 Given a class 𝒟𝒟 of dictionaries, and data samples,
𝑿𝑿 = 𝒙𝒙1,𝒙𝒙2, … ,𝒙𝒙𝑁𝑁 ,

• Learn an appropriate dictionary, 𝑫𝑫 ∈ 𝒟𝒟
• Obtain a representation 𝒘𝒘𝑖𝑖 for each 𝒙𝒙𝑖𝑖
• Encode each coefficient separately

Such that
• 𝒙𝒙𝑖𝑖 ≈ 𝑫𝑫𝒘𝒘𝑖𝑖

• Transmission rate, 𝑅𝑅(𝒘𝒘𝑖𝑖), is minimized

min
𝑫𝑫,𝒘𝒘

𝑅𝑅 𝒘𝒘
𝑠𝑠. 𝑡𝑡. ‖𝒙𝒙 − 𝑫𝑫𝒘𝒘‖22 ≤ 𝜖𝜖

or
min
𝑫𝑫,𝒘𝒘

‖𝒙𝒙 − 𝑫𝑫𝒘𝒘‖22 + 𝜆𝜆𝑅𝑅 𝒘𝒘

Compression Rate

Dictionary
 Cost of sending dictionary is fixed, if signal is stationary, and

becomes negligible as number of samples increases.

Quantizing coefficients
 Each coefficient quantized separately.
 Using Lloyd-Max to design quantizers: complex but not much 

gain in performance
 Using uniform quantizer:

Asymptotically efficient, Quantization error is uniformly bounded, 
For small quantization step-size, δ;

𝑅𝑅 𝑤𝑤 𝑞𝑞 ≈ 𝐻𝐻𝑑𝑑 𝑤𝑤 − log2 𝛿𝛿.

For our real seismic data and SNR range (20-40 dB), uniform
quantizer performs similar to Lloyd-Max algorithm.

Encoding coefficients
 Assign probability distribution; Gaussian Mixture Model (GMM)
 Code length ≈ − log2 𝑃𝑃 𝒘𝒘

Outline of Dictionary Learning Algorithm

 Orthonormal Dictionaries: 
𝑫𝑫 = 𝑼𝑼𝑽𝑽𝑇𝑇 where 𝑿𝑿𝑾𝑾𝑇𝑇 = 𝑼𝑼𝑼𝑼𝑽𝑽𝑇𝑇 is SVD decomposition.

 Unions of orthonormal dictionaries, 𝑫𝑫 = 𝑫𝑫1,𝑫𝑫2, … ,𝑫𝑫𝐿𝐿 :
Applying the above result on each 𝑫𝑫𝑙𝑙, for 𝑿𝑿𝑙𝑙 = 𝑿𝑿 − ∑𝑘𝑘≠𝑙𝑙 𝑫𝑫𝑘𝑘𝑾𝑾𝑘𝑘.

 Unit norm atoms: 𝑫𝑫 = 𝒅𝒅1,𝒅𝒅2, … ,𝒅𝒅𝑚𝑚
• Use K-SVD algorithm
• 𝑬𝑬𝑙𝑙 = 𝑿𝑿 − ∑𝑘𝑘≠𝑙𝑙 𝒅𝒅𝑘𝑘𝒘𝒘𝑘𝑘,: (𝒘𝒘𝑘𝑘,: is the kth row of 𝑾𝑾)

𝒗𝒗 = 𝑬𝑬𝑙𝑙 𝒘𝒘𝑙𝑙,:
𝑇𝑇

𝒅𝒅𝑙𝑙 = 𝒗𝒗/ 𝒗𝒗

 𝑝𝑝 𝒘𝒘 = ∑𝒔𝒔𝜋𝜋 𝒔𝒔 𝑃𝑃 𝒘𝒘 𝒔𝒔 , 𝒘𝒘|𝒔𝒔 ~𝒩𝒩 𝝁𝝁𝒔𝒔,𝚺𝚺𝒔𝒔
 Using MAP estimator for source index in the GMM

Code length ≈ − log2 𝜋𝜋 �𝒔𝒔 + log2 𝑃𝑃 𝒘𝒘 �𝒔𝒔

 Knowing �𝒔𝒔: 𝒘𝒘∗ = 𝝁𝝁𝒔𝒔 + 𝑫𝑫𝑇𝑇𝑫𝑫 + 𝝀𝝀
2
𝚺𝚺𝐬𝐬−1

−1
𝑫𝑫𝑇𝑇 𝒙𝒙 − 𝑫𝑫𝝁𝝁𝒔𝒔

 How to estimate �𝒔𝒔:
• Orthonormal Dictionary

𝑠𝑠𝑖𝑖∗ = argmin𝑠𝑠
𝜇𝜇𝑖𝑖,𝑠𝑠−𝑦𝑦𝑖𝑖

2

𝜆𝜆+2𝜎𝜎𝑖𝑖,𝑠𝑠
2 + ln 𝜎𝜎𝑖𝑖,𝑠𝑠

𝜋𝜋𝑖𝑖 𝑠𝑠
where  𝒚𝒚 = 𝑫𝑫𝑇𝑇𝒙𝒙

• Unions of orthonormal dictionaries: treat each part (𝒘𝒘𝑙𝑙) separately
• General dictionary: iteratively estimate �𝒔𝒔 and 𝒘𝒘

Updating Dictionary

Computing Coefficients

Updating GMM parameters

 Use EM algorithm (few iterations)
 Gradient Descend

Simulation Results on Seismic Signals

• Update dictionary to minimize error: min
𝐃𝐃

∑𝑖𝑖 𝒙𝒙𝑖𝑖 − 𝑫𝑫𝒘𝒘𝑖𝑖 2
2

• Given GMM parameters and 𝑫𝑫, for each data sample 𝒙𝒙𝑖𝑖, find the coefficients: min
𝒘𝒘𝑖𝑖

𝒙𝒙𝑖𝑖 − 𝑫𝑫𝒘𝒘𝑖𝑖 2
2 − 𝜆𝜆 log2 𝑃𝑃 𝒘𝒘𝑖𝑖

• Update GMM parameters to fit 𝑾𝑾 = 𝒘𝒘1, … ,𝒘𝒘𝑁𝑁 and reduce bit rate.

 Verified the algorithm on two publicly available seismic data-
bases (UTAH and USGS)

 Considered different number of sources in the GMM model, 
𝐾𝐾 = 5 gave best results

 Seismic traces are divided into segments of length 16 or 32.
 Compared with DCT and sparse dictionary learning

UTAH database, 
orthonormal dictionary 
of size 32 × 32

USGS database, 
orthonormal dictionary 
of size 32 × 32

USGS database, union 
of two orthonormal 
dictionaries
of size 16 × 32
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