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Phase transitions for sparsely varying monotone signals : . .
Summary parsEly vEying J Optimal Denoising
We are interested in signals xo € RN that are Lemma (Descent cones for monotone sparsely varying signals) -
- monotone: xo(i + 1) > Xo(i) Theorem (Minimax risk (Oymak and Hassibi))
N : - : LetQ={ie{2,...,N}: Xo(/) > Xo(i — 1)} and define iy < b < ... < ix the elements
» sparsely varying: Xo(/ + 1) > Xp(/) only for a small number k of indices i .. N L, . : : : : :
We cl?onsi d)(;r th: fo?IOV\;)iE]ngtwl pro%(le)mS'y of Q in increasing order. The descent cone of the norm f of (RTV) at Xq is given by Let x*()) the solution of the denoising problem (PDN) with regularizer weight A and let
- . . . * . 2
~ Compressed Sensing: y(ir) < y(i + 1).§ S Y(—1) 1{xo) = min manEHX (>\)2 Xo| |
' ' _ D f,X — c RN; : : : : : o , T 7 9
min f(x), subject to Ax = Axo, (CS) (f, Xo) y | YUk1) <Yk +1)<...<ylk—=1) the minimax risk for xo over all possible o. Then:
with A € R™N random i.i.d. Gaussian yi ) =yl +1)=...sy(N) = y() < ... = y(h —1) nH(Xo) = Min Eg-_x0.n[dist(g, 70 (X0))2], (MN)
» Optimal Denoising: | =0 - o -
.1 2 | \f DN The descent cone D(f, Xo) decomposes as the product of simpler “monotone” cones. where g is a standard normal vector. Moreover the risk is maximized forc — 0 and if 7* is
min S|y — x|[= + Af(x). (DN) o Statietionl Dimencion of “monotone . L the value that minimizes (MN), then \* = r*c is the optimal choice as o — 0.
where f : RN — R U {c0} is a structure inducing function for the space of act (Statistical Dimension of “monotone™ cones (Amelunxen et al.))
monotone sparsely varying signals: | et the cones Theorem (Relationship with Statistical Dimension (Amelunxen et al.))
f(x)_{X(N)—X(1), X(rl;+1.)ZX(i),i€[N—1] (RTV) C1N:{XERN:X(1)§X(2)§...SX(N)}
0 otherwise. c) = {x eRN:0 < x(1) < x(2) < ... < x(N)}. sup Iwl
weof(X,
N < < .
Results Then we have 0(CN) = Hn, and §(CY) = SHy, where Hy = >";_, %, denotes the N-th 0(D(f, %)) < nr(Xo) < 0(D(1, X)) + 2f(Xo/HXoH)
harmonic number.
For the (CS) problem: : :
» Closed form expression for the number of measurements m required for ~ Theorem (Phase transition curves) Theorem (Optimal Regularizer)
successful reconstruction with high probability. , , , S _ : . ) .
- We show that m depends not only on the number of changing points k L6182 =1/ €{2,.... N} : Xol/) > Xo(/ — 1)} and define s < > < ... < I the elements tet i denote the last element of 2. Then the optimal 7 for (UN) is given by
but also on the location. of Q2 in increasing order. The SD of the descent cone at Xy equals N
» Characterize best, worst, and average cases. S(D(f B a . . T~ max ,:TaXN ;g(n) 0]
» Compare with the case of non-negative sparse signals. (D(f, %)) = Z =i T I iy , , , - |
For the (DN) problem: j=2 Le., 7" = M(N — i, + 1), where M(n) is the expected value of the maximum of a standard
» Characterize minimax cost and its dependence on the set of changing _ _ Gaussian random walk of n steps. It holds that M(n) < /2.
points. Dependence on nhumber and location of change points
» Calculate optimal value for regularizer . _ _ _ _
. . oot MaPos ATV monl> Recovering sparsely varying signals with the TV norm
@09t 0.9l 0.009 | :
I gos| Sos| 0008 ili ion wi inimizati
BaSIC tOOIS [1 ] go.r goy- gé 0.007 | 'Z?.b ability o.f reco"StTUCt on .th v norm minim ation Empirical calculation of reconstruction probability for
306/ S 06y E_E’ 0.006 45l Jos sparsely varying signals. 50-dimensional piecewise
Definition (Descent cones) ggj gzi 83 Zggj w0l y constant signals were constructed with variable
503/ e —-best | 03] g% 0.003 number of change points k and locations chosen
The descent cone of a convex function f : RN — R at a point x € RV is ':-EO'Q‘ ,/ ~ worst- | 3027 — 1, positive 5 © 0.002 %35 v uniformly at random. For each signal a random
defined as the set of all non-increasing directions, i.e., go';‘ © = 45%ine] §°; - |=TV monotone/ O'OO;' N £ 30 " Gaussian sensing matrix was constructed with variable
D(f X) — U{.V - RN : f(X + Ty) < f(X)} ’ O.ievel%?spargi?y: k/IE)l.8 1 ’ 0fevel g':fspargify: k/(lzl'8 1 ’ O.2LeveI06‘flspargi$y: k/NO'8 1 §25 " number of rows (measurements) m. Reconstruction
7 g - | | | | E ol 0.4 was attempted by minimizing the total variation (TV)
Example: » Best case: All changing points are occurring simultaneously. = | norm subject to the measurements. The probability of
: f . f C(Rx>0 5(D(f, Xo)) = (k — 1) + Hy. 1« o . success (co.I(.)r coded in th.e.background) unde.rgoes a
(x) = |x| = D(f, x) = R 0" . . . . . . | . phase transition. The empirical 50% success line
+, X < » Worst case: All changing points are occurring periodically every N/k steps. With 5 0. . .
vk = mod(N, k) empirical phase transition (yellow) lies very close to the PTC for sparse signals
- - _ _ Nk o 10 20 30 40 50 (magenta) as is theoretically computed in [2].
Definition (Statlstlcal dlmensmn) 5(D(f, XO)) — (k — rN,k)H[N/k] -+ rN,kH[N/k]+1 — k('Og(N/k) + fy)? # of change points
The statistical dimension (SD) of a convex cone C € RN is defined as where v ~ 0.577 s the Euler-Mascheroni constant. Theoretical results are harder because the descent cone of the TV norm has more
) » Average case: The k change points are chosen uniformly at random. For complex structure.
0(C) = Egnro,m)|IMec(@)]I" N,k —ocowithk/N=¢,0<e<1
where g is a standard Gaussian vector, and [l is the projection onto C. ; klog(1/¢) Acknowledgements
Example: 6(R") = n/2. 0(D(f, X0)) = 1_ ¢
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Theorem (Phase transitions (Amelunxen et al.)) Relationship with CS of non-negative sparse signals using the /; norm
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