Compressed sensing and optimal denoising of sparse monotone signals Eftychios A. Pnevmatikakis

Summary

We are interested in signals $\mathbf{x_0} \in \mathbb{R}^N$ that are

• monotone: $x_0(i+1) \ge x_0(i)$

► sparsely varying: $\mathbf{x}_0(i+1) > \mathbf{x}_0(i)$ only for a small number k of in We consider the following two problems:

Compressed Sensing:

min $f(\mathbf{x})$, subject to $A\mathbf{x} = A\mathbf{x}_0$,

with $A \in \mathbb{R}^{m \times N}$ random i.i.d. Gaussian

Optimal Denoising:

$$\min_{\boldsymbol{x}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{x}\|^2 + \lambda f(\boldsymbol{x}),$$

where $f : \mathbb{R}^N \mapsto \mathbb{R} \cup \{\infty\}$ is a structure inducing function for the space monotone sparsely varying signals:

$$f(\boldsymbol{x}) = \begin{cases} \boldsymbol{x}(N) - \boldsymbol{x}(1), \ \boldsymbol{x}(i+1) \geq \boldsymbol{x}(i), i \in [N-1] \\ \infty, & \text{otherwise.} \end{cases}$$

Results

For the (CS) problem:

- Closed form expression for the number of measurements m red successful reconstruction with high probability.
- We show that m depends not only on the number of changing p but also on the location.
- Characterize best, worst, and average cases.
- Compare with the case of non-negative sparse signals.

For the (DN) problem:

- Characterize minimax cost and its dependence on the set of ch points.
- Calculate optimal value for regularizer λ .

Basic tools [1]

Definition (Descent cones)

The descent cone of a convex function $f : \mathbb{R}^N \mapsto \mathbb{R}$ at a point $\mathbf{x} \in \mathbb{R}$ defined as the set of all non-increasing directions, i.e.,

$$\mathcal{D}(f, \mathbf{X}) = \bigcup_{\tau > 0} \{ \mathbf{y} \in \mathbb{R}^N : f(\mathbf{X} + \tau \mathbf{y}) \leq f(\mathbf{X}) \}.$$

Example:

$$f(x) = |x| \Rightarrow \mathcal{D}(f, x) = \left\{egin{array}{c} \mathbb{R}_-, \ x > 0 \ \mathbb{R}_+, \ x < 0 \end{array}
ight\}$$

Definition (Statistical dimension)

The statistical dimension (SD) of a convex cone $\mathcal{C} \in \mathbb{R}^N$ is defined $\delta(\mathcal{C}) = \mathbb{E}_{\boldsymbol{g} \sim \mathcal{N}(\boldsymbol{0}, I_{\mathcal{N}})} \| \mathsf{\Pi}_{\mathcal{C}}(\boldsymbol{g}) \|^{2},$

where \boldsymbol{g} is a standard Gaussian vector, and $\Pi_{\mathcal{C}}$ is the projection or Example: $\delta(\mathbb{R}^n_+) = n/2$.

Theorem (Phase transitions (Amelunxen et al.))

For an i.i.d. standard random Gaussian matrix $A \in \mathbb{R}^{m \times N}$ the converse problem (CS) succeeds with probability at least $1 - \exp(-t^2/4)$ if $m \geq \delta(\mathcal{D}(f, \mathbf{x_0})) + t\sqrt{N},$ and fails with probability at least $1 - \exp(-t^2/4)$ if $m \leq \delta(\mathcal{D}(f, \mathbf{x_0})) - t\sqrt{N}.$

Flatiron Institute, Simons Foundation.Phase transitions for sparsely varying monoLemma (Descent cones for monotone sparsely varying
to f0 in increasing order. The descent cone of the norm f1,
of 0 in increasing order. The descent cone of the norm f1,
$$y(k_1) \leq y(i_{k-1} + 1) \leq \dots$$

 $y(k_1) \leq y(i_{k-1} + 1) \leq \dots$
 $y(k_1) \leq y(i_{k-1} + 1) \leq \dots$
The descent cone $\mathcal{D}(f, x_0) + (x \in \mathbb{R}^N : x(1) \leq x(2) \leq \dots \leq x(1)$
 $\mathcal{C}_N^N + (x \in \mathbb{R}^N : x(1) \leq x(2) \leq \dots \leq x(1)$
 $\mathcal{C}_N^N + (x \in \mathbb{R}^N : 0) \leq x(1) \leq x(2) \leq \dots$
Then we have $\delta(\mathcal{C}_N^N) = \frac{1}{4} x \in \mathbb{R}^N : 0 \leq x(1) \leq x(2) \leq \dots$
Then we have $\delta(\mathcal{C}_N^N) = \frac{1}{4} x \in \mathbb{R}^N : 0 \leq x(1) \leq x(2) \leq \dots$
Then we have $\delta(\mathcal{C}_N^N) = \frac{1}{4} x \in \mathbb{R}^N : 0 \leq x(1) \leq x(2) \leq \dots$
 $\delta(\mathcal{D}(f, x_0)) = \frac{1}{2} \sum_{i=1}^{k} H_{i_i+i_i+1} + H_{N-i_i}$
and
 $\delta(\mathcal{D}(f, x_0)) = \frac{1}{2} \sum_{i=1}^{k} H_{i_i+i_i+1} + H_{N-i_i}$
and
 $\delta(\mathcal{D}(f, x_0)) = \frac{1}{2} \sum_{i=1}^{k} H_{i_i+i_i+1} + H_{N-i_i}$
 $\delta(\mathcal{D}(f, x_0)) = (k-1) - H_{k+1}$
. Worst case: All changing points are occurring simultane
 $\delta(\mathcal{D}(f, x_0)) = (k - 1) - H_{k+1}$
. Worst case: All changing points are occurring periodic
 $F_{N,k} = \operatorname{mod}(N, k),$
 $\delta(\mathcal{D}(f, x_0)) = (k - 1) - H_{k+1}$
. Worst case: The k change points are chosen unifor
 $N, k \to \infty$ with $k/N = \varepsilon_1 0 < \varepsilon < 1$
where $\gamma \approx 0.577$ is the Euler-Mascheroni co

 \approx 0.0096 for $k/N \approx$ 0.0731.

New York, NY

tone signals

ng signals)

 $< i_2 < \ldots < i_k$ the elements of (RTV) at **x**₀ is given by $\leq y(i_2-1)$

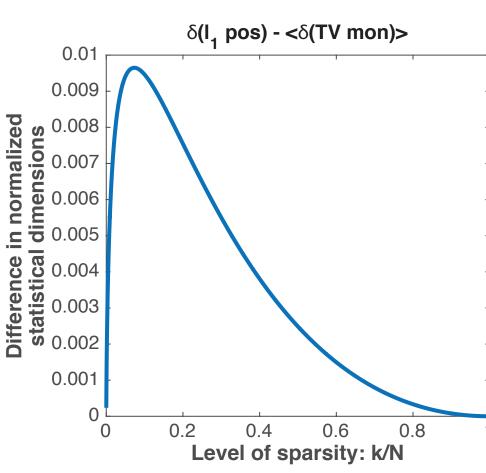
 $\ldots \leq \mathbf{y}(i_k-1)$ $(y(1) \le \dots \le y(i_1 - 1))$

simpler "monotone" cones. nelunxen et al.))

(N) $\leq \mathbf{x}(N)$. $\sum_{i=1}^{N} \frac{1}{i}$, denotes the N-th

 $< i_2 < \ldots < i_k$ the elements $\mathbf{c}_{\mathbf{0}}$ equals

nge points



eously.

cally every N/k steps. With

 $\rightarrow k(\log(N/k) + \gamma),$

mly at random. For

using the *I*₁ norm

e of non-negative signals ally [2]. e PTC computed above

t panel) attains a maximum of

Optimal Denoising

Theorem (Minimax risk (Oymak and Hassibi))

Let $\mathbf{x}^*(\lambda)$ the solution of the denoising problem (PDN) with regularizer weight λ and let

the minimax risk for \mathbf{x}_0 over all possible σ . Then: $\eta_f(\mathbf{x_0}) = \min_{\tau \ge 0} \mathbb{E}_{\mathbf{g} \sim \mathcal{N}(\mathbf{0}, I)}[\operatorname{dist}(\mathbf{g}, \tau \partial f(\mathbf{x_0}))^2],$

where **g** is a standard normal vector. Moreover the risk is maximized for $\sigma \to 0$ and if τ^* is the value that minimizes (MN), then $\lambda^* = \tau^* \sigma$ is the optimal choice as $\sigma \to 0$.

Theorem (Relationship with Statistical Dimension (Amelunxen et al.))

 $\delta(\mathcal{D}(f, \textbf{\textit{X}}_{\mathbf{0}})) \leq$

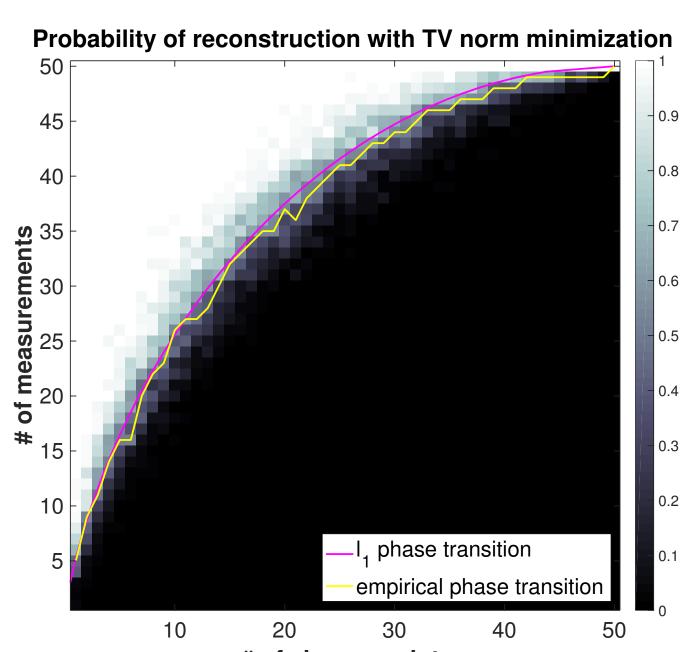
Theorem (Optimal Regularizer)

Let i_k denote the last element of Ω

 $au^* = \mathsf{m}$

i.e., $\tau^* = M(N - i_k + 1)$, where M(of a standard Gaussian random walk of n steps. It holds that $M(n) \leq \sqrt{\frac{2n}{\pi}}$.

Recovering sparsely varying signals with the TV norm



of change points

Theoretical results are harder because the descent cone of the TV norm has more complex structure.

Acknowledgements

We thank L. Paninski, J. Tropp, and M. McCoy for useful discussions.

References

- convex programs with random data. Information and Inference, iau005.
- sensing. Proceedings of the National Academy of Sciences 106(45), 18914.
- Allerton Conference on, pp. 1018?1025. IEEE.

 $\eta_f(\mathbf{x_0}) = \min_{\lambda \ge 0} \max_{\sigma \ge 0} \frac{\mathbb{E} \|\mathbf{x}^*(\lambda) - \mathbf{x_0}\|^2}{\sigma^2},$

(MN)

$$\sup_{\boldsymbol{\zeta}} \sup_{\boldsymbol{\eta}_{f}} (\boldsymbol{x}_{0}) \leq \delta(\mathcal{D}(\boldsymbol{f}, \boldsymbol{x}_{0})) + 2 \frac{\boldsymbol{w} \in \partial f(\boldsymbol{x}_{0})}{f(\boldsymbol{x}_{0}/||\boldsymbol{x}_{0}||)}.$$

2. Then the optimal
$$\tau^*$$
 for (MN) is given by

$$\max\left(\max_{j=i_k,...,N}\left\{\sum_{n=j}^{N} \boldsymbol{g}(n)\right\}, 0\right),$$
(n) is the expected value of the maximum

Empirical calculation of reconstruction probability for sparsely varying signals. 50-dimensional piecewise constant signals were constructed with variable number of change points *k* and locations chosen uniformly at random. For each signal a random Gaussian sensing matrix was constructed with variable number of rows (measurements) *m*. Reconstruction was attempted by minimizing the total variation (TV) norm subject to the measurements. The probability of success (color coded in the background) undergoes a phase transition. The empirical 50% success line (yellow) lies very close to the PTC for sparse signals (magenta) as is theoretically computed in [2].

```
Amelunxen, D., M. Lotz, M. B. McCoy, and J. A. Tropp (2014). Living on the edge: Phase transitions in
2 Donoho, D., A. Maleki, and A. Montanari (2009). Message-passing algorithms for compressed
3 Oymak, S. and B. Hassibi (2012). On a relation between the minimax risk and the phase transitions
  of compressed recovery. In Communication, Control, and Computing (Allerton), 2012 50th Annual
```