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Summary

We are interested in signals x0 ∈ RN that are
I monotone: x0(i + 1) ≥ x0(i)
I sparsely varying: x0(i + 1) > x0(i) only for a small number k of indices i

We consider the following two problems:
I Compressed Sensing:

min
x

f (x), subject to Ax = Ax0, (CS)

with A ∈ Rm×N random i.i.d. Gaussian
I Optimal Denoising:

min
x

1
2
‖y − x‖2 + λf (x), (DN)

where f : RN 7→ R ∪ {∞} is a structure inducing function for the space of
monotone sparsely varying signals:

f (x) =

{
x(N)− x(1), x(i + 1) ≥ x(i), i ∈ [N − 1]
∞, otherwise. (RTV)

Results

For the (CS) problem:
I Closed form expression for the number of measurements m required for

successful reconstruction with high probability.
I We show that m depends not only on the number of changing points k

but also on the location.
I Characterize best, worst, and average cases.
I Compare with the case of non-negative sparse signals.

For the (DN) problem:
I Characterize minimax cost and its dependence on the set of changing

points.
I Calculate optimal value for regularizer λ.

Basic tools [1]

Definition (Descent cones)

The descent cone of a convex function f : RN 7→ R at a point x ∈ RN is
defined as the set of all non-increasing directions, i.e.,

D(f ,x) =
⋃
τ>0

{y ∈ RN : f (x + τy) ≤ f (x)}.

Example:

f (x) = |x | ⇒ D(f , x) =

{
R−, x > 0
R+, x < 0 .

Definition (Statistical dimension)

The statistical dimension (SD) of a convex cone C ∈ RN is defined as

δ(C) = Eg∼N (0,IN)‖ΠC(g)‖2,

where g is a standard Gaussian vector, and ΠC is the projection onto C.
Example: δ(Rn

+) = n/2.

Theorem (Phase transitions (Amelunxen et al.))

For an i.i.d. standard random Gaussian matrix A ∈ Rm×N the convex
problem (CS) succeeds with probability at least 1− exp(−t2/4) if

m ≥ δ(D(f ,x0)) + t
√

N,

and fails with probability at least 1− exp(−t2/4) if

m ≤ δ(D(f ,x0))− t
√

N.

Phase transitions for sparsely varying monotone signals

Lemma (Descent cones for monotone sparsely varying signals)

Let Ω = {i ∈ {2, . . . ,N} : x0(i) > x0(i − 1)} and define i1 < i2 < . . . < ik the elements
of Ω in increasing order. The descent cone of the norm f of (RTV) at x0 is given by

D(f ,x0) =

y ∈ RN :

y(i1) ≤ y(i1 + 1) ≤ . . . ≤ y(i2 − 1)
...

y(ik−1) ≤ y(ik−1 + 1) ≤ . . . ≤ y(ik − 1)
y(ik) ≤ y(ik + 1) ≤ . . . ≤ y(N) ≤ y(1) ≤ . . . ≤ y(i1 − 1)

 .

The descent cone D(f ,x0) decomposes as the product of simpler “monotone” cones.

Fact (Statistical Dimension of “monotone” cones (Amelunxen et al.))

Let the cones
CN

1 = {x ∈ RN : x(1) ≤ x(2) ≤ . . . ≤ x(N)}
CN

2 = {x ∈ RN : 0 ≤ x(1) ≤ x(2) ≤ . . . ≤ x(N)}.

Then we have δ(CN
1 ) = HN, and δ(CN

2 ) = 1
2HN, where HN =

∑N
i=1

1
i , denotes the N-th

harmonic number.

Theorem (Phase transition curves)

Let Ω = {i ∈ {2, . . . ,N} : x0(i) > x0(i − 1)} and define i1 < i2 < . . . < ik the elements
of Ω in increasing order. The SD of the descent cone at x0 equals

δ(D(f ,x0)) =
k∑

j=2

Hij−ij−1 + HN+i1−ik .

Dependence on number and location of change points
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I Best case: All changing points are occurring simultaneously.

δ(D(f ,x0)) = (k − 1) + HN+1−k

I Worst case: All changing points are occurring periodically every N/k steps. With
rN,k = mod(N, k),

δ(D(f ,x0)) = (k − rN,k)H[N/k ] + rN,kH[N/k ]+1→ k(log(N/k) + γ),

where γ ≈ 0.577 is the Euler-Mascheroni constant.
I Average case: The k change points are chosen uniformly at random. For

N, k →∞ with k/N = ε, 0 < ε < 1

δ(D(f ,x0)) =
k log(1/ε)

1− ε
.

Relationship with CS of non-negative sparse signals using the l1 norm

I The phase transition curve for the recovery of k -sparse of non-negative signals
using l1-norm minimization can be computed analytically [2].

I This curve is very close but not identical to the average PTC computed above
(middle panel).

I The difference between the two different curves (right panel) attains a maximum of
≈ 0.0096 for k/N ≈ 0.0731.

Optimal Denoising

Theorem (Minimax risk (Oymak and Hassibi))

Let x∗(λ) the solution of the denoising problem (PDN) with regularizer weight λ and let

ηf (x0) = min
λ≥0

max
σ>0

E‖x∗(λ)− x0‖2

σ2 ,

the minimax risk for x0 over all possible σ. Then:

ηf (x0) = min
τ≥0

Eg∼N (0,I)[dist(g, τ∂f (x0))2], (MN)

where g is a standard normal vector. Moreover the risk is maximized for σ → 0 and if τ ∗ is
the value that minimizes (MN), then λ∗ = τ ∗σ is the optimal choice as σ → 0.

Theorem (Relationship with Statistical Dimension (Amelunxen et al.))

δ(D(f ,x0)) ≤ ηf (x0) ≤ δ(D(f ,x0)) + 2

sup
w∈∂f (x0)

‖w‖

f (x0/‖x0‖)
.

Theorem (Optimal Regularizer)

Let ik denote the last element of Ω. Then the optimal τ ∗ for (MN) is given by

τ ∗ = max

 max
j=ik ,...,N


N∑

n=j

g(n)

 ,0

 ,

i.e., τ ∗ = M(N − ik + 1), where M(n) is the expected value of the maximum of a standard
Gaussian random walk of n steps. It holds that M(n) ≤

√
2n
π .

Recovering sparsely varying signals with the TV norm
Probability of reconstruction with TV norm minimization
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1 Empirical calculation of reconstruction probability for
sparsely varying signals. 50-dimensional piecewise
constant signals were constructed with variable
number of change points k and locations chosen
uniformly at random. For each signal a random
Gaussian sensing matrix was constructed with variable
number of rows (measurements) m. Reconstruction
was attempted by minimizing the total variation (TV)
norm subject to the measurements. The probability of
success (color coded in the background) undergoes a
phase transition. The empirical 50% success line
(yellow) lies very close to the PTC for sparse signals
(magenta) as is theoretically computed in [2].

Theoretical results are harder because the descent cone of the TV norm has more
complex structure.
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