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MAIN CONTRIBUTIONS
1. Unlike conventional DNN-based methods,

the developed fully complex-valued DNN
(FCDNN) directly learns the nonlinear rela-
tionship between input mixture and target
sources in a fully complex domain.

2. In addition, to reinforce the sparsity of the
estimated spectra, a sparse penalty term is
incorporated into the objective function of
the FCDNN. The advantage is that the num-
ber of free parameters of the FCDNN is re-
duced, ensuring that the model does not
find a poor local minimum during the learn-
ing.

INTRODUCTION
DNN have become a popular means of separat-
ing a target source from a mixed signal. Most of
DNN-based methods modify only the magnitude
spectrum of the mixture. The phase spectrum
is left unchanged, which is inherent in the STFT
coefficients of the input signal. However, recent
studies have revealed that incorporating phase
information can improve the quality of separated
sources. To estimate simultaneously the magni-
tude and the phase of STFT coefficients, this work
paper developed a FCDNN that learns the non-
linear mapping from complex-valued STFT coef-
ficients of a mixture to sources.

EXPERIMENTAL RESULTS
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Figure 1: The architecture of FCDNN

The effectiveness of the proposed method is eval-
uated on the singing source separation task. To
generate the training and development set, 175
clips of songs are selected from MIR-1K [1]. For
the testing set, the remaining 825 clips of songs are
used. Two sources (P = 2) are mixed to form the
mixture. The spectrograms were generated using
a 128-point STFT (K = 65). A standard DNN-
based method: DNN-M, is selected as the base-
line. Another method: DNN-RI, which jointly es-
timates the real and imaginary components, is also
compared to the proposed FCDNN.

Fig. 2 demonstrates that the proposed method
outperformed the baseline methods in terms of
SDR and SIR. However, FCDNN achieved lower
SAR compared with the baseline methods. Ta-
ble 1 shows the average performance in terms of
SNRfw and PESQ. FCDNN had a better PESQ
than DNN-M, but its PESQ was similar to that
of DNN-RI. Comparison between FCDNN and
FCDNN-S confirmed the power of the additional
sparse regularization term.

Table 1: Performance of Speech Quality Measures

Methods SNRfw PESQ

Mixture -0.89±1.29 1.22±0.43
IRM 5.36±1.37 1.99±0.41

DNN-M 0.56±1.66 1.45±0.37
DNN-RI 1.65±2.00 1.53±0.33

FCDNN 1.50±1.90 1.50±0.34
FCDNN-S 1.83±2.02 1.59±0.33

REFERENCES
[1] C. L. Hsu and J. S. Jang. On the improvement of singing

voice separation for monaural recordings using the mir-1k
dataset. 18(2):310–319, 2010.

[2] K. Kreutz-Delgado. The complex gradient operator and
the cr-calculus. Technical report, 2009.

COMPLEX-VALUED ACTIVATION

A complex-valued ReLU is defined as,

ReLUC(z) =

{
z , φz ∈

[
0, π2

]
0 , otherwise

The ReLUC is found herein to be less sensitive to
the initialization of weights than other complex-
valued activations, such as tanh and sigmoid, in
the source separation task.
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CONCLUSION
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Figure 2: Results of source separation

• Unlike conventional DNN-based methods,
the proposed method operates directly in
the complex domain, and also provides an
intuitive way to deal with complex-valued
signals.
• Additionally, a sparsity constraint is im-

posed on the objective function of FCDNN,
enforcing the regularity of the learned
model.
• Experimental results indicate that the pro-

posed method has higher SDR and SIR
than two state-of-the-art methods.

FULLY COMPLEX-VALUED DNN
Without loss of generality, a two-layer FCDNN
is considered, as shown in Fig. 1. The objective
function of the FCDNN can be defined as follows,

N∑
n=1

En =
N∑
n=1

(d(n)− y(n)) (d(n)− y(n))
H ∈ R

(1)
where y(n) ∈ CKP is the output, En
is the n-th partial error term, d(n) =
(d1(n),d2(n), ...,dP (n)) ∈ CKP is the spec-
tra of the P sources. Omitting the frame index n,
the j-th element of y(n) can be represented as

yj = x
(2)
j = f(

N1∑
k=1

w
(2)
jk · f

(
a
(1)
k

)
+ b

(2)
j︸ ︷︷ ︸

a
(2)
j

) ∈ C (2)

where a
(1)
k =

N0∑
m=1

w
(1)
kmx

(0)
m + b

(1)
k ; f : C → C

is a nonlinear activation function in the com-
plex domain. Notably, x(0)k ,x(1)k , w(l)

jk , and b
(l)
j are

complex-valued.

SPARSE MODEL TRAINING
This work considers prior knowledge of the in-
herent sparse structure of speech signals in the
time-frequency domain. A sparse constraint is
further imposed on the objective function of the
FCDNN.

Esparse
n = En + β ·

M∑
j=1

DKL (ρ ‖ ρ̂nj) (3)

where ρ̂j = 1
m

∑m
i=1

∣∣∣f(a(l)j )
∣∣∣ denotes the mean

activation of the j-th hidden unit; M represents
the number of neurons in the l-layer, and ρ is
the predefined sparse parameter. To train the
FCDNN, the stochastic gradient decent (SGD) is
adopted in our work. CR-calculus [2] is utilized
to calculate the partial derivative of Esparse

n with
respect to complex-valued parameters. For exam-
ple, the partial derivative ofEsparse

n with respect to
w

(2)
jk can be calculated by,

∂Esparse
n

∂(w
(2)
jk )

= ∂En

∂(w
(2)
jk )<

+ i · ∂En

∂(w
(2)
jk )=

+ β ·
(
− ρ
ρ̂nk

+ 1−ρ
1−ρ̂nk

)
· x∗(1)k

(4)


