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Introduction
Background: In many real world applications, the observation noise does not follow the Gaussian
statistics. In particular, when the number of observed photon counts is relatively low at the camera
detector, the measurement noise follows a Poisson distribution.

Applications: Astronomy, night vision, and medical imaging such as Positron Emission Tomography
(PET) and Single Photon Emission Computed Tomography (SPECT).

Goal: Recover sparse high-resolution signals from low-dimensional measurements corrupted by Pois-
son noise.

Approach: Explicitly model noise using Poisson statistics and further enforce sparsity and structure
in the solution using the `p-norm (0 ≤ p < 1). Solve time-dependent sparse recovery problems in
several steps: Recover the support of the signal using the time-averaged data and reconstruct the signal
intensity using the time-dependent data.

Observation Model
The Poisson noise model [1] is used to accurately model the received photon counts at the detector:

y ∼ Poisson(Af∗),

where
y ∈ Zm+ = a vector of observed photon counts,
f∗ ∈ Rn+ = the true signal or image of interest,
A ∈ Rm×n+ = the linear projection matrix.

Method: The true signal f∗ is estimated using the maximum likelihood principle.

Optimization Problem
The Poisson intensity reconstruction problem has the following constrained minimization form:

minimize
f∈Rn

Φ(f) ≡ F (f) + τ pen(f) (1)

subject to f � 0,

where τ > 0 is a regularization parameter, F (f) is the negative Poisson log-likelihood function
F (f) = 1TAf −

∑m
i=1 yi log(eTi Af + β), where 1 is an m-vector of ones, ei is the ith canonical

basis unit vector, β > 0 (typically β � 1) and pen : Rn −→ R is a sparsity-promoting penalty
functional.

Proposed approach: Use SPIRAL framework [2] with pen(f) = ‖f‖pp (0 ≤ p < 1) to enhance the
sparsity of the reconstruction.

Subproblem Formulation
To solve the minimization problem in (1), F (f) is approximated by second-order Taylor series expan-
sion, where the Hessian in the Taylor series is replaced by a scaled identity matrix αkI, where αk > 0
[3]. A simple manipulation to this quadratic approximation will lead into a sequence of subproblems
of the form

fk+1 = arg min
f∈Rn

1

2
‖ f − sk ‖22 +

τ

αk
‖f‖pp (2)

subject to f � 0,

where sk = fk − 1
αk
∇F (fk). The subproblem (2) can be uncoupled into scalar minimization problems

and solved using the generalized soft-thersholding function – a zero finding method such as Newton’s
method or fixed-point iteration method is used along with a threshold value to find the global minimum
[4, 5].

Significance
Our approach is significant for the following reasons:
1) We incorporate a nonconvex `p-norm to further promote sparsity in the solution.
2) The p-value can be tuned to highlight different structural properties of the signal.
3) We solve time-dependent sparse recovery problems using a multistep process.

Application: Fluorescence Lifetime Imaging
Goal: Reconstruct the fluorescence lifetime along with the support and fluorophore concentration
from time-dependent CCD camera measurements corrupted by Poisson noise (see Fig. 1) [6].
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Figure 1: Schematic diagram of time-dependent fluorescence lifetime tomography.

Forward problem: Transportation of excitation light Ie is governed by an initial-boundary value prob-
lem for the diffusion approximation. A portion of Ie is absorbed by the fluorophores and re-emitted.
The transportation of emitted light If is then modeled by

1

c

∂If

∂t
−∇ · (κf ∇If ) + µ

f
aI
f = Q(r, t) in Ω× (0, T ], (3)

If + αfκf
∂If

∂n
= 0 on ∂Ω,

If (r, 0) = 0 in Ω,

If : the intensity of emission light, χ(r) : indicator function,
κf : the diffusion coefficient, h(r) : fluorphore concentration,
µ
f
a : the absorption coefficient, τ (r) : fluorescence-lifetime,
Q(r, t) = χ(r)h(r)

∫ t
0 e
−(t−t′)/τ (r)Iedt′, αf , c : some physical constants.

Then, we model measurements of scattered light leaving the boundary of the medium, u(r, t), through
evaluation of

u(r, t) = −κf ∂I
f

∂n
=

1

αf
If on ∂Ω× (0, T ].

Both initial-boundary value problems are solved numerically using the Crank-Nicolson method. In
the discrete setting, the time-dependent measurements are obtained by restricting the numerical solu-
tion of emission light, say V, to the boundary:

y =
1

αf
RV =

1

αf
RL−1Q̃, (4)

where R is a boundary restriction operator, L is the finite difference operator and Q̃ isQ(r, t) averaged
between consecutive time steps.

Forward operator: We define 1
αf
RL−1 in (4) as the system matrix A. Instead of generating the

system matrix A explicitly, we compute the action A(·) and AT (·) on-the-fly using the forward and
backward substitution techniques.

Inverse problem: The inverse problem seeks to reconstruct the sparse spatial distribution of fluores-
cence lifetime τ (r) from the set of Poisson noisy measurements in u.

Step 1: We apply our nonconvex Poisson noise-based sparsity promoting method, to determine the
spatial support, χ(r) from the time-averaged data (see Fig. 2(a)).

Step 2: Using the determined support χ(r) of the sources from Step 1, we apply the same Poisson
recovery method to determine Q(r, t) from the time-dependent measurements with a negligible regu-
larization penalty parameter.

Step 3: Using χ(r) and Q(r, t) from Steps 1 and 2, we apply Matlab’s nonlinear least squares solver
(lsqnonlin) to recover the fluorophore concentration h(r) and the lifetime τ (r).

Numerical experiments: We used a unit square domain Ω = (0, 1)× (0, 1) with non-dimensionalized
optical properties: the absorption coefficient µa = 0.05 and the diffusion coefficient κ = 0.0476. A
sampling rate of 0.05 and 5 exterior near-infrared sources were used.

Ground Truth Range of Estimate
h(I1) 2.00× 103 1.29× 103 to 2.72× 103

h(I2) 2.00× 103 0.58× 103 to 0.95× 103

τ 5.70 5.76

(a) Proposed approach (b) `2 − `1 minimization

Figure 2: (a) Reconstructed support of the fluorophore islands (true support is shown by red boxes)
using the Step 1. (b) Support from `2 − `1 minimization using the GPSR method [7].

Application: Time-Dependent Bioluminescence Tomography
Goal: We seek to reconstruct sources of light contained within a tissue sample from noisy boundary
measurements of scattered light. Compared to the fluorescence lifetime imaging problem, here we do
not have an excitation source (see Fig. 3(a)). Therefore, we model only the emission light using the
diffusion approximation.

Inverse problem: We propose two-stage based inverse approach [8]:

Step 1: Use our nonconvex Poisson noise-based sparsity promoting method to recover the support
using the time-averaged data (see Fig. 3(b)).

Step 2: With the given support determined from Step 1, we recover the characteristic time decay using
the time-dependent data (see Fig. 3(c)).
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Figure 3: (a) Schematic diagram of time-dependent bioluminescence tomography. (b) Reconstructed
support (p = 0.3) (true support is shown by red boxes). (c) Approximated decay rate through a linear
fit to the reconstruction is 1.53, while the true decay rate is 1.50.

Concluding Remarks: We developed and implemented a nonconvex sparsity promoting method that
is able to solve time-dependent tomography problems such as fluorescence lifetime imaging and bio-
luminescence tomography, using a multistep process.
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