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Contribution
We propose a novel and efficient anchor generation approach, i.e. BKHK. BKHK has low computational
complexity and relatively high performance compared with K-means. It is worthwhile to note that BKHK
can be easily portable to other spectral based methods to enhance their ability of dealing with large scale
data.

BKHK
Let us begin with two class k-means which can be
formulated as follows:

min
G∈Ind,1TG=[κ,ι]

‖X −GCT ‖2F (1)

where C ∈ Rd×2 is the center of the cluster, G ∈
Rn×2 is the index matrix, gi1 equals 1 if the i-th
sample belongs to the first cluster, or gi2 equals 1
otherwise, and 1 is the column-vector of all ones.
Moreover, κ and ι are the number of samples in these
two clusters, and we clearly have κ+ ι = n. We can
simply set κ = bn2 c to make different clusters have
same amount of samples (If n is an odd number, we
set κ = n−1

2 ). We then rewrite problem (1) as:

min
G∈Ind,1TG=[κ,ι]

n∑
i=1

2∑
k=1

‖xi − ck‖22gik (2)

where ck is the k-th column of C. For convenience,
we define matrix E ∈ Rn×2 and the (i, j)-th entry
of E is denoted as eij = ‖xi − ck‖22, thus we rewrite
problem (2) as

min
G∈Ind,1TE=[κ,ι]

Tr(ETG) (3)

Let g denoted the first column of G, since G is index
matrix, the second column can be denoted as (1−g),
then problem (3) can be rewritten as

min
g∈{0,1},1T g=κ

gT e1 + (1− g)T e2 (4)

where e1 and e2 are the first and second column of
E, respectively. Then, we arrive at

min
g∈{0,1},1T g=κ

gT (e1 − e2) (5)

The solution to problem (5) is intuitively, i.e. we
assign gi = 1 when the i-th element of e1− e2 is the
κ minimum of all its elements.

Illustration of Balanced K-means based Hierarchical K-means

There are two more points we would like to mention, first, BKHK is a pretty efficient method
especially for large scale data, and can be easily applied to accelerate other graph based
learning methods, e.g. hashing, semi-supervised learning , dimensionality reduction, RBF
networks, etc. Second, early stopping and down-sampling can speed up k-means a lot, and
can also be adopted by BKHK for extremely large data.

Comparative results on benchmark datasets

ACC (%) SC LSC-R LSC-K FSC
USPS 64.0 57.6 57.8 61.1

Protein 43.9 43.4 43.6 44.2
Connect-4 44.3 38.4 39.2 42.5

MNIST 68.4 63.3 69.5 67.1

RT (s) SC LSC-R LSC-K FSC
USPS 5.8 2.1 12.8 3.0

Protein 73.3 16.1 267.4 19.8
Connect-4 398.7 17.7 534.5 20.9

MNIST 242.6 3.4 149.4 41.5
According to the results, we conclude several interesting points. Anchor-based graph can greatly reduce
the computational cost (e.g. LSC-R and FSC), nonetheless, inappropriate use even slow down the speed.
LSC-K adopts k-means to generate anchors, the high computational complexity of k-means greatly limits
the algorithm, particularly, k-means may need lots of iterations to converge in some cases, e.g. we need
about 500 seconds to perform k-means on Connect-4. And as mentioned above, LSC-R randomly selects
the anchors, which makes it extremely efficient but also with poor performance. By contrast, FSC adopts
BKHK to generate anchors, combined with effective non-parameter graph construction method, it achieves
pretty high performance with little time cost, and there is no doubt that FSC is the best choice for real life
application among all the methods.

Graph Construction
We adopt a parameter-free yet effective neighbor as-
signment method. The neighbor assignment for the
i-th sample can be seen as solving following problem

min
zTi 1=1,zi≥0

m∑
j=1

h(xi, uj)zij + γ

m∑
j=1

z2ij , (6)

where Z ∈ Rn×m denotes the similarity between the
i-th sample and the j-th anchor, γ can be set as
γ = k

2h(i, k + 1) − 1
2

∑k
j=1 h(i, j). The solution to

problem (6) is

zij =
h(xi, uk+1)− h(xi, uj)∑k

j′=1 (h(xi, uk+1)− h(xi, uj′))
. (7)

As we obtain the matrix Z, similarity matrix A then
can be obtained by

A = Z∆−1ZT , (8)

where ∆ ∈ Rm×m is a diagonal matrix and the i-th
entry is defined as

∑n
j=1 zji.

Spectral Analysis
Spectral clustering can then be performed by

min
FTF=I

Tr(FTLF ) (9)

where F ∈ Rn×c is indicator matrix, c is the cluster-
ing number. L ∈ Rn×n is Laplacian Matrix which
is defined by L = D − A. Thus, the solution to
problem (9) can be obtained by performing eigen-
value decomposition on A. In addition, according to
Equation (8), A can be written as A = BBT , where

B = Z∆−
1
2 , instead of directly performing eigen-

value decomposition on A, we prefer to performing
SVD on B to speed up the algorithm.

Computational Complexity
1. We need O(nd log(m)t) to obtain m anchors by BKHK algorithms, where t is the iterative number of
balanced k-means. 2. We need O(ndm+ nm log(m)) to construct graph by anchor-based approach. 3. We
need O(m3 + m2n) to obtain F by perform SVD on matrix B. 4. We need O(ndmr) to perform k-means
for final clustering results, where r is the iterative number.
Considering that m � n and t is usually pretty small, the overall computational complexity of FSC is
O(ndm) .


