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Visualization of Learned Kernels 

Conclusion 

Analysis and Comparison 

•  Predictive modeling on 
environmental sound conventionally 
requires feature engineering based 
on Mel-frequency cepstrum 
coefficient (MFCC) and Gaussian 
Mixture Model features. 

•  End-to-end discriminative 
representation learning is highly 
effective for many areas, such as 
image classification and speech 
recognition. 

Task and Datasets 

•  Environmental sound classification: 10 
classes of environmental sounds such as 
drilling, car horn etc. 

•  Dataset: UrbanSound8K with 8732 audio 
clips of 4 seconds, amounting to 9.7 hours. 

Key Design Decisions 

Experiment Setup 

Experiment Results 

Fig-1:  
 
(a) Temporal resolution decreases by factor of 4 
(stride 4) in max pooling to limit computation cost. 

(b) Each resblock consists of 2 covolutional layers 
     used only in 34-layer experiment. 

•  All audio clips are down-sampled to 8kHz and 
standardized to 0 mean and variance 1. 

•  Input vector of length 32000, covering 10ms of 
time domain waveform 

•  Train CNN using Adam to adaptively tune the 
step size of each dimension 

•  Run 100 ~ 400 epochs until convergence 

•  Glorot Initialization to avoid vanishing or 
exploding gradients 

•  L2 regularization with coefficient of 0.0001 

•  Use fold 10 as test set and rest for training and 
validation 

•  No data augmentation except shuffling 

Deeper is better, 
up to 18 layers, test 
accuracies 
increases with more 
layers. Training time 
per epoch increase 
mildly 

•  M18 achieves comparable test accuracy to 
the traditional 2 convolutional-layer model 
using spectrogram feature as input. 

 
•  Shallow model shows limited capacity to 

capture discriminative feature from raw 
waveform despite more parameters ( M11 vs 
M5-big ). 

•  Deeper fully-convolutional model improves 
the expressiveness of the model for better 
generalization (M5 vs M18). 

•  M34-res loses to M18 due to overfitting on the 
small dataset without further regularization. 

•  Additional 2 fully-connected layers lead to 
worse accuracy and 2 ~ 95% more training 
time per epoch ( Table 5 ). 

 
•  Receptive Field tradeoff (in first layer): too 

small leads to losing frequency filter effect; 
too large leads to smoothing out local wavelet 
structure ( Fig-2 ) 

 
•  Batch normalization: a necessary 

regularization that improves test accuracy in 
all models especially deeper ones. 

•  Control model capacity (and training time) by 
reducing all but 1st layer receptive field to 3 

Performance 
sensitive to 
receptive field (RF) 
size in first layer. 
Test accuracies for 
M11 and M18 suffers 
with small RF (srf, 
RF=8) and large RF 
(lrf, RF=320). 

Fully connected (FC) layer does not 
help. M3, M5, M11, M18 see no 
improvement with FC layer 

More filters do not help shallower 
networks. Additional filters for shallow 
networks (M3, M5) marginally improve 
performance. 
 

Experiments cont’d 

BN is 
necessary for 
training very 
deep CNNs 
 

•  Fourier transform on the 1st 
convolutional layer weights of M18 
show that they act as filter banks. 

•  Filter bank quality sensitive to 
receptive field (RF) size. Left: proper 
RF size lead to well-formed filters; 
Middle: small RF gives dispersed 
band and lower frequency resolution; 
Right: large RF lacks sufficient filters 
in high frequency range. 

•  We propose very deep fully 
convolutional networks, with up to 34 
convolutional layers, for acoustic 
waveform. Our models uses large 
receptive field, and are efficient to train 
thanks to aggressive down sampling 
and batch normalization.  

•  Our CNN with 18 layers outperforms 
the 2-layer network by 15.56% 
accuracy absolutely and is competitive 
with models using log-mel features 

Background – Raw Waveform 

•  Raw waveform: the sound signal in 
time domain represented by a 1-D 
vector. 

•  Very high dimensional, 
conventionally not directly used as 
model input. 

•  Prior success using acoustic 
waveform as model input: 2-layer 
convolutional neural networks 
(CNNs) on speech recognition [1] 

•  No CNNs deepr than 2-layers on 
environmental sounds which span 
much wider frequency spectrum  

Background – Very Deep CNNs 

•  Very deep convolutional neural 
networks (CNNs) have achieved 
much higher accuracy than 
shallower networks in the visual 
domain. 

•  The deep network poses 
computational challenges like 
vanishing / exploding gradients, long 
training time per epoch, and 
overfitting. 

Research Question 

Fully convolutional 
• We remove fully connected layers to 
induce better representation learning 
in the  convolutional layers. 
• Substantially reduces the number of 
parameters and counteracts 
overfitting. 

Residual learning 
• Learn the residual mapping: F(x) = 
H(x) – x, where x is in the input to the 
layer and H(x) is the desired mapping. 
• Improves convergence for very deep 
CNNs. 
• We use the variant shown in Fig-1 (b) 

Batch normalization (BN) 
• Auxiliary layer to alleviate internal 
covariate shift and improve 
convergence. 
• Necessary for training deeper CNNs 

Which deep CNN architectures are 
suitable for environmental sound 
classification on raw acoustic 
waveforms? What is the performance 
compared with models using log-mel 
features? 

Model Overview 

 
•  Force convolutional layer, as opposed to fully-

connect layer, to learn feature extraction for 
better representation and generalization. 

•  Balance of model parameters / depth and 
expressiveness. 

•  Deeper network has not been applied to 
environmental sound, on smaller datasets 
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Basic Building Blocks 
• Inspired by VGG network design [2] 
and residual network [3] 
• Fully convolutional (1-D convolutions) 
• Max pool reduces temporal resolution 
by 4 and doubles the number of 
feature maps, comparable to vision 
(2x2 pooling) 
• Small receptive field (3) except the 
first layer  

Depth of the network 
• Increasing the number of convolutional 
layers substantially improves the 
accuracy, up to 18 convolutional layers. 
• Deeper network increases 
computation time. We use stride 4 in 
the first convolutional layer to improve 
speed. 

Receptive field size 
• Unlike image models, large receptive 
field in the first layer is necessary to 
learn good filters. 
• We find that receptive field 80 for first 
layer on 8kHz audio (10ms duration) 
works well 
• Small receptive field (3) for the rest of 
convolutional layers 

Key Design Decisions (continued) 

Architectures 

Architectures 

•  5 models studied. M3 (0.2M) 
represents 3 convolutional layers 
with 0.2M parameters. 

•  [3, 64] x 2 denotes two blocks of 
convolutional layers, each with 
receptive field 3 and 64 feature 
maps. 

•  Stride = 1 unless specified as [80/4, 
128] for stride 4. 

•  64GB memory with Titan X GPU 
•  Trained for 150-400 epochs till 

convergence 
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Motivation 

•  Double layers in a bracket denotes 
residual block: 

 
 
 

•  Output 500 x n in max pool layer 
denotes the output temporal 
dimension to be 500 


