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Graph Signal Processing

Preliminaries
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S is the graph operator
Adjacency matrix1 : A
Graph Laplacians2 : L, or L
Other selections3

L “ V ΛV -1 Graph Fourier Basis : V
Graph Fourier Transform : F “ V -1

1 Sandryhaila & Moura, "Discrete Signal Processing on Graphs," IEEE Trans. S. P. vol. 61, no. 7, 2013
2 Shuman et al, "The emerging field of signal processing on graphs: ...," IEEE S. P. Magazine, vol. 30, no. 3 2013
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Motivation

Why do we consider sparse eigenvectors of graphs?

Sparse (localized/concentrated) eigenvectors exist!

They are observed 4,5, but no general theory!

s0pxq “
}x}0 ` }Fx}0

2

s‹
0 “ min

x‰0
s0pxq

[6]

F -1 “ V “ rv1 v2 ¨ ¨ ¨ vN s s0pviq “
}vi}0 ` 1

2

4 P. N. McGraw, M. Menzinger, ”Laplacian spectra as a diagnostic tool for network structure and dynamics,” Phys. Rev. E, (2008)
5 Perraudin et al., ”Global and Local Uncertainty Principles for Signals on Graphs,” arXiv:1603.03030
6 Teke & Vaidyanathan, “Uncertainty Principles and Sparse Eigenvectors of Graphs,” IEEE Trans. S. P., under review.
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Sparse Eigenvectors of Graphs Disconnected Graphs

Disconnected Graphs

The graph of size N has D disconnected components

Each component has size Ni with
ř
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There is an eigenvector with at most Ni non-zero elements.

Small component ùñ Sparse eigenvectors exist trivially!

Sparse eigenvectors in connected graphs.
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Sparse Eigenvectors of Graphs Connected Graphs

1-sparse Case

When does a graph have a 1-sparse eigenvector?

Theorem (1-sparse eigenvectors)

Assume the graph is weighted and undirected.
Then, for the graph Laplacian, L,

"

D v s.t.
Lv “ λv

}v}0 “ 1

*

ðñ

!

D an isolated node
)

Connected graph ùñ No 1-sparse eigenvector!
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Sparse Eigenvectors of Graphs Connected Graphs

2-sparse Case

Theorem (2-sparse eigenvectors)

Assume the graph is weighted, undirected and connected.
Then, for the graph Laplacian, L,
$

&

%

D v s.t.

Lv “ λv

λ ‰ 0

}v}0 “ 2

,

.

-

ðñ

#

D i, j s.t. ai,k“aj,k @ k P t1, ¨ ¨ ¨ , Nuzti, ju

+

ðñ

!

D i, j s.t. N piqztju“N pjqztiu
)

(unweighted)

3 3 7
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Sparse Eigenvectors of Graphs Generalizations

K-Sparse Case

Can we generalize to arbitrary K?

1-sparse eigenvector ðñ N piq “ tu

2-sparse eigenvector ðñ N piqztju “ N pjqztiu

3-sparse eigenvector ðñ N piqztj, ku “ N pjqzti, ku “ N pjqzti, ku

K-nodes such that neighbors (except from each other) are the same.
ó

There is a K-sparse eigenvector.

This is only sufficient, but not necessary.

(Counter-examples to follow)
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Real-World Examples

Co-appearance Network of Novel Les Misérables

Nodes = Characters Connectivity = Co-Appearance7

(77) (weighted)

2-sparse exists!
(via our result)

Our result on 3-sparse
does not apply!

It does have
a 3-sparse!

7 M. E. J. Newman," (2013) Network data. [Online]." Available: http://www-personal.umich.edu/„mejn/netdata/
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Real-World Examples

Further Observations & Results

‚ An unweighted graph has a sparse eigenvector iff its complement has.

‚ Sparsity of graph is irrelevant to the existence of sparse eigenvectors.

‚ 2 and 3-sparse eigenvectors are necessarily localized.

‚ A K-sparse eigenvector may not be localized.

‚ Sparse eigenvectors ùñ Large coherence of graph Fourier basis 6.

Theorem
Assume the graph is simple and connected.

3-sparse eigenvector ùñ 2-sparse eigenvector.

6 Teke & Vaidyanathan, “Uncertainty Principles and Sparse Eigenvectors of Graphs,” IEEE Trans. S. P., under review.
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Conclusions
1 Graphs do have sparse eigenvectors.

2 Disconnected graphs trivially have sparse eigenvectors.

3 Necessary&Sufficient conditions for 1, 2 and 3-sparse eigenvectors

4 Classical and real-world examples of graphs

Questions

1 Necessary condition for an arbitrary K-spare eigenvector

2 Extension to directed graphs

3 Interplay between sparsity, localization and concentration

Thank you!
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