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Disconnected Graphs

The graph of size N has D disconnected components

Each component has size N; with >, N; = N

Ay L,
A= 5 L= 5
Ap Lp

Ai € RNiXNi Li € RNiXNi
There is an eigenvector with at most N; non-zero elements.

Small component = Sparse eigenvectors exist trivially!

Sparse eigenvectors in connected graphs.
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1-sparse Case

When does a graph have a 1-sparse eigenvector?

Theorem (1-sparse eigenvectors)

Assume the graph is weighted and undirected.
Then, for the graph Laplacian, L,

Lv =M .
Jov s.t. — {3 an isolated node}
lvflo =1

Connected graph = No 1-sparse eigenvector!
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Can we generalize to arbitrary K?
1-sparse eigenvector <« N@G) = {}

2-sparse eigenvector <« NG} = NG)\{i}
3-sparse eigenvector <<= N()\{j,k} = NO)\{i, k} = N(5)\{i, k}

K-nodes such that neighbors (except from each other) are the same. \

U

There is a K-sparse eigenvector.

This is only sufficient, but not necessary.

(Counter-examples to follow)
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Co-appearance Network of Novel Les Misérables

Nodes = Characters Connectivity = Co-Appearance’
(77) (weighted)

2-sparse exists!
(via our result)

Our result on 3-sparse
does not apply!

It does have
a 3-sparse!

Cochepaille

7 M. E. J. Newman," (2013) Network data. [Online]." Available: http://www-personal.umich.edu/~ mejn/netdata/
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e An unweighted graph has a sparse eigenvector /ff its complement has.

e Sparsity of graph is irrelevant to the existence of sparse eigenvectors.

e 2 and 3-sparse eigenvectors are necessarily localized.«;

e A K-sparse eigenvector may not be localized.

44.76

-9342-9341 -93.4 -93.39-93.38

« Sparse eigenvectors —> Large coherence of graph Fourier basis 6.

Theorem

Assume the graph is simple and connected.
3-sparse eigenvector —> 2-sparse eigenvector.

5 Teke & Vaidyanathan, “Uncertainty Principles and Sparse Eigenvectors of Graphs,” IEEE Trans. S. P, under review.
Teke & Vaidyanathan ICASSP 2017 16/18



Conclusions

Graph Signal Processing
Motivation
Sparse Eigenvectors of Graphs
m Disconnected Graphs
m Connected Graphs
m Generalizations

Real-World Examples

Conclusions

Teke & Vaidyanathan



Conclusions

Conclusions

m Conclusions
Graphs do have sparse eigenvectors.

Disconnected graphs trivially have sparse eigenvectors.
Necessary&Sufficient conditions for 1, 2 and 3-sparse eigenvectors
Classical and real-world examples of graphs

Teke & Vaidyanathan ICASSP 2017 18/18



Conclusions

Conclusions

m Conclusions
Graphs do have sparse eigenvectors.

Disconnected graphs trivially have sparse eigenvectors.
Necessary&Sufficient conditions for 1, 2 and 3-sparse eigenvectors
Classical and real-world examples of graphs

m Questions
Necessary condition for an arbitrary K-spare eigenvector

Teke & Vaidyanathan ICASSP 2017 18/18



Conclusions

Conclusions

m Conclusions
Graphs do have sparse eigenvectors.

Disconnected graphs trivially have sparse eigenvectors.
Necessary&Sufficient conditions for 1, 2 and 3-sparse eigenvectors
Classical and real-world examples of graphs

m Questions
Necessary condition for an arbitrary K-spare eigenvector

Extension to directed graphs

Teke & Vaidyanathan ICASSP 2017 18/18



Conclusions

Conclusions

m Conclusions
Graphs do have sparse eigenvectors.

Disconnected graphs trivially have sparse eigenvectors.
Necessary&Sufficient conditions for 1, 2 and 3-sparse eigenvectors
Classical and real-world examples of graphs

m Questions
Necessary condition for an arbitrary K-spare eigenvector

Extension to directed graphs

Interplay between sparsity, localization and concentration

Teke & Vaidyanathan ICASSP 2017 18/18



Conclusions

Conclusions

m Conclusions
Graphs do have sparse eigenvectors.

Disconnected graphs trivially have sparse eigenvectors.
Necessary&Sufficient conditions for 1, 2 and 3-sparse eigenvectors
Classical and real-world examples of graphs

m Questions
Necessary condition for an arbitrary K-spare eigenvector

Extension to directed graphs

Interplay between sparsity, localization and concentration

Thank you!
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