Effect of Acoustic Conditions on Algorithms to Detect Parkinson's Disease from Speech

Juan Camilo Vásquez–Correa, Joan Serrà–Julià, Juan Rafael Orozco–Arroyave, Elmar Nöth

Faculty of Engineering, University of Antioquia UdeA. Pattern recognition Lab. Friedrich Alexander Universität. Erlangen-Nürnberg. Telefónica Research.

jcamilo.vasquez@udea.edu.co

Telefonica

Telefónica Investigación y Desarrollo

4 D N 4 B N 4 B N 4 B N

The 42nd IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP-2017)

イロト イロト イヨト イヨト 二日

2/35

Introduction Methodology Non-Controlled Acoustic Conditions Algorithms Data Results Conclusion

- Second most prevalent neurological disorder worldwide.
- Patients develop several motor and non-motor impairments.
- Speech impairments are one of the earliest manifestations.

- Several state of art algorithms.
- Comparison under the same data and conditions.
- Performance under real world noisy conditions is unknown.
 - Background noise (Street, car, cafeteria...)
 - Distortion
 - Telephone channels

What happen if the audio quality is degraded?

イロト イポト イヨト イヨト

イロト イポト イヨト イヨト

6/35

- Distortion
- Dynamic Compression
- Background noise
- Audio codecs
- Telephone Channels

Distortion

- Dynamic Compression
- Background noise
- Audio codecs
- Telephone Channels

- Distortion
- Dynamic Compression
- Background noise
- Audio codecs
- Telephone Channels

イロト イポト イヨト イヨト

NIVERSIDAD DE ANTIOQUIA

NIVERSIDAD DE ANTIOOUIA

- Distortion
- Dynamic Compression
- Background noise
- Audio codecs
- ► Telephone Channels

イロト イポト イヨト イヨト

- Distortion
- Dynamic Compression
- Background noise
- Audio codecs
- Telephone Channels

- Phonation analysis in sustained vowels
- Voiced/Unvoiced modeling
- Articulation in Voiced/Unvoiced transitions
- Gaussian mixture models supervectors
- OpenSMILE :)

Feature Extraction: Phonation Analysis¹

- ► Fundamental frequency F₀
- Jitter
- Shimmer
- Energy

- Amplitude perturb. quotient
- Pitch perturb. quotient

¹J. R. Orozco-Arroyave, E. A. Belalcazar-Bolaños, et al. "Characterization Methods for the Detection of Multiple Voice Disorders: Neurological, Functional, and Laryngeal Diseases". In: *IEEE Journal of Biomedical and Health Informatics* 19.6 (2015), pp. 1820–1828.

Feature Extraction: Voiced/Unvoiced Modeling²

 Voiced: MFCC, jitter, shimmer, formant freq., F₀, energy.

 Unvoiced: MFCC, energy in Bark scale

²J. R. Orozco-Arroyave, F. Hönig, S. Skodda, et al. "Automatic detection of Parkinson's disease from words uttered in three different languages.". In: 15th Anual Conference of the Speech and Communication Association (INTERSPEECH). 2014, pp. 1573–1577.

Feature Extraction: Voiced/Unvoiced Transition³

The hypothesis: the difficulty of the patients to start/stop walking is also reflected in the process to start/stop the vocal fold vibration

^{15 / 35}

Feature Extraction:GMM Supervector⁴

⁴Tobias Bocklet et al. "Automatic evaluation of Parkinson's speech-acoustic, prosodic and voice related cues". In: 14th Anual Conference of the Speech and Communication Association (INTERSPEECH). 2013, pp. 1149–1153.

- Standard toolkit for speech processing
- 6373 static acoustic features
 - Energy
 - ► *F*₀
 - MFCC
 - Duration ...

⁵Florian Eyben and Björn Schuller. "openSMILE:): the Munich open-source large-scale multimedia feature extractor". In: *ACM SIGMultimedia Records* 6.4 (2015), pp. 4–13.

- Support vector machine
- RBF/Linear kernel
- Leave one out CV
- Accuracy as performance measure

- 100 native Spanish speakers (Colombians): 50 Parkinson's patients & 50 Healthy controls.
- ► Recorded in a sound-proof booth with professional equipment.
- Different speech tasks.
 - Sustained vowels
 - Readtext
 - Monologue

⁶J. R. Orozco-Arroyave, Vargas-Bonilla J. F., et al. "New spanish speech corpus database for the analysis of people suffering from Parkinson's disease.". In: *9th Language Resources and Evaluation Conference, (LREC)*. 2014, pp. 342–347.

Results: Matched Conditions

SNR [dB]

- Onset is the most affected
- Impact reduced in vowels and voiced
- Reduction in performance ranges from 10% to 20%

Environmental Noise

- After SNR=6 dB high reduction
- The effect is similar for all algorithms
- Onset, offset and SuperVectors are the most affected

・ 同 ト ・ ヨ ト ・ ヨ ト

Environmental Noise (2)

- Reverberated room noise causes the most performance reduction.
- Street and car noises have lower impact over the clean conditions.
- There is not a significance difference among the different noises relative to AWGN.

Results: Matched Conditions

- OpenSMILE, vowels, voiced and onset are not affected
- The effect is lower than the observed for background noise

Compression

 Some compression ratios may improve the results (voiced)

< 回 > < 三 > < 三 >

24 / 35

Codecs

	Vowels	Voiced	Onset	Offset	OS	SV
Clean	72%	74%	82%	81%	81%	72%
Opus	74%	79%	86%	80%	87%	69%
Silk	71%	75%	75%	75%	75%	61%
A-law	75%	78%	73%	67%	64%	62%
G.722	74%	82%	87%	75%	79%	63%
GSM-FR	73%	82%	70%	64%	76%	68%

- Opus and G.722 generally improve the results
- GSM improves the results for vowels and voiced

Channels

	Vowels	Voiced	Onset	Offset	OS	SV
Clean	72%	74%	82%	81%	81%	72%
Hangouts	76%	76%	79%	67%	85%	64%
Skype	76%	73%	61%	71%	79%	71%
Landline	75%	75%	66%	67%	78%	75%
Mobile	73%	76%	65%	57%	76%	71%

- Hangouts and landline generally improve the results
- ► Mobile is the most affected, specially for onset & offset

Results: Mismatched Background Noise

- The effect is more critical than matched.
- Voiced and Vowels are the less affected
- Onset, OpenSMILE and SuperVectors are the most affected

Results: Mismatched Distortion

- Effect of distortion is observed
- High impact for vowels and voiced.

イロト イポト イヨト イヨト

3

28 / 35

▶ Results in clean conditions range from 70% to 85%.

- ▶ Results in clean conditions range from 70% to 85%.
- Results do not always decrease monotonically relative to the noise level.

- ▶ Results in clean conditions range from 70% to 85%.
- Results do not always decrease monotonically relative to the noise level.
- Background noise is the most critical condition.

- ▶ Results in clean conditions range from 70% to 85%.
- Results do not always decrease monotonically relative to the noise level.
- Background noise is the most critical condition.
- Audio codecs and dynamic compression can improve the results.

- ▶ Results in clean conditions range from 70% to 85%.
- Results do not always decrease monotonically relative to the noise level.
- Background noise is the most critical condition.
- Audio codecs and dynamic compression can improve the results.
- The effect produced by telephone channels is not too critical.

- ▶ Results in clean conditions range from 70% to 85%.
- Results do not always decrease monotonically relative to the noise level.
- Background noise is the most critical condition.
- Audio codecs and dynamic compression can improve the results.
- ► The effect produced by telephone channels is not too critical.
- Mismatched conditions is a problem which need to be solved. (Data augmentation, speech enhancement).

Effect of Acoustic Conditions on Algorithms to Detect Parkinson's Disease from Speech

Juan Camilo Vásquez–Correa, Joan Serrà–Julià, Juan Rafael Orozco–Arroyave, Elmar Nöth

Faculty of Engineering, University of Antioquia UdeA. Pattern recognition Lab. Friedrich Alexander Universität. Erlangen-Nürnberg. Telefónica Research.

jcamilo.vasquez@udea.edu.co

Telefónica

Telefónica Investigación y Desarrollo

4 D N 4 B N 4 B N 4 B N

The 42nd IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP-2017)

35 / 35