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Introduction: Parkinson’s Disease

I Second most prevalent neu-
rological disorder worldwide.

I Patients develop several mo-
tor and non-motor impair-
ments.

I Speech impairments are one
of the earliest manifestations.
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Introduction: Motivation

I Several state of art algorithms.

I Comparison under the same data and conditions.

I Performance under real world noisy conditions is unknown.

I Background noise (Street, car, cafeteria...)
I Distortion
I Telephone channels

What happen if the audio quality is degraded?
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Methodology
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Methodology: Non-Controlled Acoustic Conditions

I Distortion

I Dynamic Compression

I Background noise

I Audio codecs

I Telephone Channels
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Methodology: Feature Extraction

I Phonation analysis in sustained vowels

I Voiced/Unvoiced modeling

I Articulation in Voiced/Unvoiced transitions

I Gaussian mixture models - supervectors

I OpenSMILE :)
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Feature Extraction: Phonation Analysis1

I Fundamental frequency F0

I Jitter
I Shimmer
I Energy

I Amplitude perturb.
quotient

I Pitch perturb. quotient

1J. R. Orozco-Arroyave, E. A. Belalcazar-Bolaños, et al. “Characterization
Methods for the Detection of Multiple Voice Disorders: Neurological,
Functional, and Laryngeal Diseases”. In: IEEE Journal of Biomedical and
Health Informatics 19.6 (2015), pp. 1820–1828.
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Feature Extraction: Voiced/Unvoiced Modeling2

I Voiced: MFCC, jitter,
shimmer, formant
freq., F0, energy.

I Unvoiced: MFCC,
energy in Bark scale

2J. R. Orozco-Arroyave, F. Hönig, S. Skodda, et al. “Automatic detection
of Parkinson’s disease from words uttered in three different languages.”. In:
15th Anual Conference of the Speech and Communication Association
(INTERSPEECH). 2014, pp. 1573–1577.
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Feature Extraction: Voiced/Unvoiced Transition3

The hypothesis: the difficulty of the
patients to start/stop walking is also
reflected in the process to start/stop
the vocal fold vibration

3J. R. Orozco-Arroyave, F. Hönig, J. F. Vargas-Bonilla, et al.
“Voiced/unvoiced transitions in speech as a potential bio–marker to detect
Parkinson’s disease”. In: 16th Anual Conference of the Speech and
Communication Association (INTERSPEECH). 2015, pp. 95–99.

15 / 35



Feature Extraction:GMM Supervector4

4Tobias Bocklet et al. “Automatic evaluation of Parkinson’s
speech-acoustic, prosodic and voice related cues”. In: 14th Anual Conference
of the Speech and Communication Association (INTERSPEECH). 2013,
pp. 1149–1153.
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Feature Extraction: OpenSMILE :)5

I Standard toolkit for speech processing
I 6373 static acoustic features

I Energy
I F0

I MFCC
I Duration ...

5Florian Eyben and Björn Schuller. “openSMILE:): the Munich open-source
large-scale multimedia feature extractor”. In: ACM SIGMultimedia Records
6.4 (2015), pp. 4–13.
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Methodology: Classification

I Support vector machine

I RBF/Linear kernel

I Leave one out CV

I Accuracy as performance
measure
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Methodology: Data6

I 100 native Spanish speakers (Colombians): 50 Parkinson’s pa-
tients & 50 Healthy controls.

I Recorded in a sound-proof booth with professional equipment.
I Different speech tasks.

I Sustained vowels
I Readtext
I Monologue

6J. R. Orozco-Arroyave, Vargas-Bonilla J. F., et al. “New spanish speech
corpus database for the analysis of people suffering from Parkinson’s disease.”.
In: 9th Language Resources and Evaluation Conference, (LREC). 2014,
pp. 342–347.
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Results: Matched Conditions
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] I Onset is the most affected

I Impact reduced in vowels
and voiced

I Reduction in performance
ranges from 10% to 20%
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Results: Matched Conditions

Environmental Noise

Voiced Model

Onset Model

OpenSMILE

SuperVectors

Phonation

I After SNR=6 dB high
reduction

I The effect is similar for all
algorithms

I Onset, offset and
SuperVectors are the most
affected
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Results: Matched Conditions

Environmental Noise (2)

I Reverberated room noise causes the most performance reduc-
tion.

I Street and car noises have lower impact over the clean condi-
tions.

I There is not a significance difference among the different noises
relative to AWGN.

22 / 35



Results: Matched Conditions

Distortion

Voiced Model
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Phonation

I OpenSMILE, vowels, voiced
and onset are not affected

I The effect is lower than the
observed for background
noise
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Results: Matched Conditions

Compression

Voiced Model

Onset Model
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I Some compression ratios
may improve the results
(voiced)
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Results

Codecs

Vowels Voiced Onset Offset OS SV
Clean 72% 74% 82% 81% 81% 72%

Opus 74% 79% 86% 80% 87% 69%
Silk 71% 75% 75% 75% 75% 61%

A-law 75% 78% 73% 67% 64% 62%

G.722 74% 82% 87% 75% 79% 63%

GSM-FR 73% 82% 70% 64% 76% 68%

I Opus and G.722 generally improve the results

I GSM improves the results for vowels and voiced
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Results

Channels

Vowels Voiced Onset Offset OS SV
Clean 72% 74% 82% 81% 81% 72%

Hangouts 76% 76% 79% 67% 85% 64%

Skype 76% 73% 61% 71% 79% 71%

Landline 75% 75% 66% 67% 78% 75%
Mobile 73% 76% 65% 57% 76% 71%

I Hangouts and landline generally improve the results

I Mobile is the most affected, specially for onset & offset
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Results: Mismatched Background Noise
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I The effect is more critical
than matched.

I Voiced and Vowels are the
less affected

I Onset, OpenSMILE and
SuperVectors are the most
affected
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Results: Mismatched Distortion

Voiced Model

Onset Model

OpenSMILE

SuperVectors

Phonation

I Effect of distortion is
observed

I High impact for vowels and
voiced.
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Conclusion

I Results in clean conditions range from 70% to 85%.
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Conclusion

I Results in clean conditions range from 70% to 85%.

I Results do not always decrease monotonically relative to the
noise level.

I Background noise is the most critical condition.

I Audio codecs and dynamic compression can improve the results.

I The effect produced by telephone channels is not too critical.

I Mismatched conditions is a problem which need to be solved.
(Data augmentation, speech enhancement).
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