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Motivation

Objective

Why Machine Learning in Hardware?

Enterprise App: facial recognition Mobile App: Handwriting Recognition

Microsoft Catapult Qualcomm Zeroth

Big, complex, slow. 
Slow to run, slower 

(days/weeks) to train. 

Challenges involve 
running in real-time 

and low power

Apps

Problems

Solutions

Captured Sound 
Mixtures

Each point represents 
the energy of a 

(time, frequency) point

F
re

q
u
e
n
c
y

F
re

q
u
e
n
c
y

Time

Time

Right

Left

MRF Modeling
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Binary Mask: 
which point 
belongs to 

which source

Inference

Separated 
Sources
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Undesired: Source 0
Desired: Source 1

Desired 

Undesired 

Left Spectrum

Right Spectrum

Distribution approximated by two weighted Gaussians

ai = 20 log
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ai ⇠ w0N (µ0,�0) + w1N (µ1,�1)

Data Cost

Smoothness Cost
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0 for Source 0

1 for Source 1
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MAP Inference
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Mapping to Markov Random Field

MRF	 Solve	

A common MRF framework

Sampling-based Inference

•  MRF is a general framework to solve ML inference applications
•  An accelerator can possibly boost up all apps in this category	

Sample and 
update 
variable 
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Conditional Independence 
via Local Markov Property
8x 2 V : x?V \x | neighbors(x)

P (x|y) = P (y|x)P (x)
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§  A working HW implementation of source separation in a 
mobile form-factor using MRFs and Gibbs inference

§  FPGA implementation running at 150 MHz with 207 KB 
of RAM, 64-bit memory width and 96 Kb/s of bandwidth 
requirement which is mobile-friendly

§  Good Signal-to-Distortion Ratio of 6.7 dB with better 
auditory performance and very low 1.601ms latency, a 
20X speedup from input to output sound stream, well 
below latency req for human hearing on mobile phone

§  Virtual ASIC design (45 nm) power estimate 70 mW 
running at 20 MHz to meet latency req, a 52X power 
reduction vs. ARM Cortex-A9 mobile software reference

Summary

Develop High Performance and Low-power Architectures 
for Inference on Probabilistic Graphical Models

FPGA	Resource	 FPGA	U.liza.on	

Slice	Register	 101314	/	207360	(48%)	

Slice	LUT	 90019	/	207360	(43%)	

Slice	LUT	FF	 119418	/	207360	(57%)	

BRAM	 115	/	288	(40%)	

DSP	 36	/	192	(18%)	

Hardware	Results	
Latency Requirements
§  ITU requirement 200 ms – LTE latency 

160ms = 40ms: need < 40ms

Software References
§  Intel Xeon X6550: ~64ms latency = too slow!
§  ARM Cortex-A9 takes 23.32s to run 4s of 

audio with est. peak power of 3.67 Watts = 
slower and too power much for mobile!

FPGA Platform
§  Convey HC-1 w/ Xilinx Virtex5 FPGAs
§  150 MHz, 207 KB SRAM
§  6.7 dB Signal-to-Distortion-Ratio
§  1.6 ms real-time latency, 20X speedup

Virtual ASIC Design @ 45nm
§  Quite small < 10 M gates
§  469 mW at 150 MHz (404 mW from SRAM)
§  70 mW at 20 MHz (meets latency)
§  52X reduced power vs. ARM Cortex-A9

Task: How to Separate Sounds?
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Inference using Gibbs Sampler

4 iterations of EM estimation and 
Gibbs sampling inference for MRF of  
8 time pts (256 ms) x 513 frequency pts

Scalable Iterative Architecture

•  Gibbs sampling inference core is a parameterized pipeline that can be 
easily extended to multiple parallel pipelines

•  Uses inference results from previous frame for faster convergence

Local computation:
Only 4 data access for 
adjacent nodes

MCMC-EM Parameter Estimation
6.6mm2@45nm	

SRAM	

Logic	


