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About IPMs

Interior Point Methods

Many problems in signal/image processing (image restoration, enhancement,
denoising/deblurring, spectral unmixing) can be formulated as constrained

minimization problems → need efficient methods for solving those.

Constrained Problem

P0 : minimize
x∈Rn

f (x)

s.t. (∀i ∈ {1, . . . , p}) ci (x) ≤ 0

where
f : Rn 7→]−∞,+∞] convex
(∀i ∈ {1, . . . , p}) ci : Rn 7→]−∞,+∞] convex, smooth

How to minimize f while ensuring that every iterate is feasible ?
→ Add a barrier function
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About IPMs

Logarithmic Barrier

Constrained Problem

P0 : minimize
x∈Rn

f (x)

s.t. (∀i ∈ {1, . . . , p}) ci (x) ≤ 0

⇓
Unconstrained Subproblem

Pµ : minimize
x∈Rn

f (x) − µ

p∑∑∑
i=1

ln (− ci (x))︸ ︷︷ ︸
→ +∞ as ci (x)→ 0−

Where µ > 0 is the barrier parameter.

P0 is replaced by a sequence of subproblems (Pµj )j∈N.

Subproblems are solved approximately for a sequence µj → 0.
Main advantage : every iterate is feasible.
Primal-dual algorithm : superlinear convergence for NLP. [Gould et al., 2001]

7 Require the inversion of an n × n matrix at each step : medium size applications.
7 First or second order methods : limited to smooth functions. [Armand et al., 2000]
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About IPMs

Problem of Interest

Quality of the solution and robustness against noise can be improved by adding a
non-differentiable term (`1, TV, . . . ).

Composite Constrained Problem

P0 : minimize
x∈Rn

f (x) + g(x)

s.t. (∀i ∈ {1, . . . , p}) ci (x) ≤ 0

where
f : Rn 7→]−∞,+∞] convex, non-differentiable
g : Rn 7→]−∞,+∞] convex, smooth
(∀i ∈ {1, . . . , p}) ci : Rn 7→]−∞,+∞] convex, smooth

How to address the non-smooth term while ensuring that every iterate is feasible ?
→ Combine the logarithmic barrier method with proximal tools.
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About IPMs

Notation and Definitions

Let S+(RN) be the set of symmetric positive definite matrices of RN×N .

The weighted norm induced by U ∈ S+(RN) is ‖.‖U =
√
〈. | U.〉.

Let Γ0(RN) denote the set of proper lower semicontinuous convex functions
from RN to ]−∞,+∞].

Proximity Operator

The proximal operator a proxUf (x) of f ∈ Γ0(RN) at x ∈ RN relative to the metric
induced by U ∈ S+(RN) is the unique vector ŷ ∈ RN such that

f (ŷ) +
1
2
‖ŷ − x‖2U = inf

y∈RN
f (y) +

1
2
〈y − x | U(y − x)〉.

a. http ://proximity-operator.net/

Example :
Indicator function : projection.
`1 norm : soft-thresholding.
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Approach

Proposed Approach

P0 is replaced by a sequence of subproblems (Pµj )j∈N.

Unconstrained Subproblems

Pµj : minimize
x∈Rn

f (x) + g(x)− µj

p∑∑∑
i=1

ln (− ci (x))︸ ︷︷ ︸
smooth

Our algorithm comprises two interlocked loops.
Given µj > 0, (xj,k)k is produced via several forward-backward (proximal
gradient) steps.
Once xj,k is close enough to the solution of Pµj , the barrier parameter µj is
updated.
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Algorithm

Iteration Scheme

Forward-Backward Step
For j fixed,

xj,k+1 = proxAj,k
γj,k f

(xj,k − γj,kA−1j,k∇ϕµj (xj,k))

where ϕµj (x) = g(x)− µj
p∑

i=1
ln(−ci (x)).
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Algorithm

Iteration Scheme

Forward-Backward Step
For j fixed,

xj,k+1 = proxAj,k
γj,k f

(xj,k − γj,kA−1j,k∇ϕµj (xj,k))

where ϕµj (x) = g(x)− µj
p∑

i=1
ln(−ci (x)).

Gradient step on the smooth term ;
Proximal step on the non-differentiable function f ;
Preconditioner Aj,k for acceleration [Chouzenoux et al., 2016] ;

Stepsize γj,k > 0 found using a backtracking strategy [Salzo, 2017] since ϕµj is
not Lipschitz-differentiable.
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Algorithm

Algorithm

Proximal Interior point Algorithm (PIPA)

Initialization⌊
Let γ̄ > 0, (δ, θ) ∈]0, 1[2, µ0 > 0;
Initialize x0,0 such that (∀i ∈ {1, . . . , p}) ci (x0,0) < 0;

For j = 0, 1, . . .

For k = 0, 1, . . .

Choose Aj,k satisfying a boundedness condition ;
For l = 0, 1, . . .⌊

x̃ lj,k = proxAj,k
γ̄θl f (xj,k − γ̄θlA−1j,k∇ϕµj (xj,k));

Stop if the backtracking condition is met ;

xj,k+1 = x̃ lj,k ;
γj,k = γ̄θl ;
Stop if precision conditions are met ;

xj+1,0 = xj,k+1;
Update µj ;
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Algorithm

Theoretical Results

Assumptions
The set of solutions to P0 is nonemtpy and bounded ;
f , g and the constraints are convex, g is Lipschitz-differentiable and the
constraints are continuously twice-differentiable ;
The strict interior of the feasible set is nonempty ;
(∀j ∈ N) f + ϕµj is a Kurdyka-Lojasiewicz (KL) function ;
(∀j ∈ N) (Aj,k)k are bounded from above and from below ;
limj→∞ µj = 0 and (∀i ∈ {1, . . . , 4}) limj→∞ εi,j/µj = 0.

Convergence
Under some mild technical assumptions :

for all j ∈ N, (xj,k)k∈N converges to a solution to Pµj ;
(xj,0)j∈N is bounded and every cluster point of it is a solution to P0 ;
if in addition strict complementarity holds, and if there exists i ∈ {1, . . . , p} such
that ci is strictly convex (or alternatively, for linear constraints, if some full rank
property is satisfied) then (xj,0)j∈N converges to a solution to P0.
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Hyperspectral Unmixing

Hyperspectral Unmixing Problem
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Hyperspectral Unmixing

Hyperspectral Unmixing Model

Optimization Problem

minimize
X∈Rp×n

1
2‖Y − SX‖22 + κ

p∑
i=1
‖(WXi )d‖1

s.t. (∀j ∈ {1, . . . , n})
p∑

i=1
Xi,j ≤ 1

(∀i ∈ {1, . . . , p})(∀j ∈ {1, . . . , n}) Xi,j ≥ 0

p, n, s : number of endmembers, pixels, spectral bands
Y ∈ Rs×n : observation
S ∈ Rs×p : library
X ∈ Rp×n : abundance matrix
W ∈ Rn×n : orthogonal wavelet basis
‖(.)d‖1 : `1 norm of the detail wavelet coefficients
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Hyperspectral Unmixing

Experimental Setting

Realistic Data Simulation

Urban 1 data set : p = 6 endmembers (known spectral signatures), s = 162
spectral bands, n = 256× 256 pixels
Gaussian noise : σ2 = 4.1× 10−3.

Asphalt Road Grass Tree Roof Metal Dirt

Reconstruction Model
Regularization weight : κ = 10−2.
W : orthogonal Daubechies 4 wavelet decomposition over 2 resolution levels.

Algorithm Parameters

Variable metric : Aj,k := ∇2ϕµj (xj,k) [Becker et al., 2012].
The barrier parameter (µj )j∈N and the stopping criteria {εi,j/µj}i∈{1,...,4} follow
a geometric decrease.

Implementation

Matlab R2016b, Intel Xeon 3.2 GHz processor and 16 GB of RAM.
Code will be available soon on https://github.com/mccorbineau.

1. http ://www.escience.cn/people/feiyunZHU/Dataset_GT.html
Corbineau, Chouzenoux, Pesquet PIPA: Proximal Interior Point Algorithm ICASSP 2018 13 / 22
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Hyperspectral Unmixing

Comparison

State-of-the-Art Algorithms

No reg : interior point least squares algorithm without regularization
[Chouzenoux et al., 2014]

ADMM : alternating direction of multipliers method [Setzer et al., 2010]

PDS : primal-dual splitting algorithm [Combettes et al., 2014]

GFBS : generalized forward-backward splitting algorithm [Raguet et al., 2013]
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Hyperspectral Unmixing

Evaluation Metric

Signal-to-Noise Ratio

SNR = −10 log10

(
p∑

i=1

‖Xi − X̄i‖22
‖X̄i‖22

)
; SNRi = −10 log10

(
‖Xi − X̄i‖22
‖X̄i‖22

)
where X̄i is the true abundance map of the ith endmember.

Distance from the Iterates to the Solution

‖xj,k − x∞‖2
‖x∞‖2

where x is the vectorization of X and x∞ is obtained after a very large number of
iterations.
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Results

Quantitative Results

No reg : SNR = 1.96 dB / With regularization : SNR = 3.65 dB

0 10 20 30 40 50

-6

-4

-2

0

2

4

13 sec

No reg

0 500 1000 1500 2000 2500 3000

10
-4

10
-3

10
-2

10
-1

Figure – Left : global SNR versus time. Right : distance from the iterates to the solution versus time.

Asphalt Road Grass Tree Roof Metal Dirt
No reg 10.12 11.21 11.86 14.91 4.90 13.68
ADMM 6.75 11.47 12.56 14.66 7.57 11.47
PDS 2.06 3.33 4.73 6.63 -0.08 10.27
GFBS 2.17 3.57 4.76 7.66 0.05 10.31
PIPA 10.98 11.70 12.73 15.19 7.06 14.57

Table – SNR (dB) for all endmembers after 13 sec.
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Visual Results

Asphalt Road

Groundtruth No reg ADMM

PDS GFBS PIPA

Figure – Abundance map of asphalt road after 13 sec.

No reg 10.12
ADMM 6.75
PDS 2.06
GFBS 2.17
PIPA 10.98

Table – SNR (dB)
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Visual Results

Grass

Groundtruth No reg ADMM

PDS GFBS PIPA

Figure – Abundance map of grass after 13 sec.

No reg 11.21
ADMM 11.47
PDS 3.33
GFBS 3.57
PIPA 11.70

Table – SNR (dB)
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Visual Results

Dirt

Groundtruth No reg ADMM

PDS GFBS PIPA

Figure – Abundance map of dirt after 13 sec.

No reg 13.68
ADMM 11.47
PDS 10.27
GFBS 10.31
PIPA 14.57

Table – SNR (dB)
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Conclusion

Application of a new proximal interior
point algorithm to hyperspectral unmixing
with a non-differentiable regularization.

Convergence guaranteed under mild assumptions.
Possibility to include an arbitrary preconditioner.
Good performance in the context of a large-scale image recovery application.

→ Extension of the convergence proof to inexact proximity operator.
→ Other applications.
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Stopping Criteria

Backtracking [Salzo, 2017]

For j and k fixed, the backtracking procedure stops if :

ϕµj (x̃ lj,k)− ϕµj (xj,k)−
〈
x̃ lj,k − xj,k | ∇ϕµj (xj,k)

〉
≤

δ

γ̄θl
‖x̃ lj,k − xj,k‖2Aj,k

If f := 0, Armijo linesearch along the steepest direction.

Accuracy for Solving Pµj
The barrier parameter is decreased as soon as the following criteria are met :

‖xj,k − xj,k+1‖ ≤ ε1,j 1
γj,k
‖Aj,k(xj,k − xj,k+1)‖ ≤ ε2,j

p∑
i=1

∣∣∣ ci (xj,k+1)
ci (xj,k ) − 1

∣∣∣ ≤ ε3,j µj

∥∥∥∥ p∑
i=1

∇ci (xj,k )−∇ci (xj,k+1)
ci (xj,k )

∥∥∥∥ ≤ ε4,j
where {(εi,j )j∈N}i∈{1,...,4} and (µj )j∈N are strictly positive sequences converging to 0
such that (∀i ∈ {1, . . . , 4}) lim

j→∞
εi,j/µj = 0.
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Tree

Groundtruth No reg ADMM

PDS GFBS PIPA

Figure – Abundance map of tree after 13 sec.

No reg 11.86
ADMM 12.56
PDS 4.73
GFBS 4.76
PIPA 12.73

Table – SNR (dB)

Corbineau, Chouzenoux, Pesquet PIPA: Proximal Interior Point Algorithm ICASSP 2018 2 / 4



Roof

Groundtruth No reg ADMM

PDS GFBS PIPA

Figure – Abundance map of roof after 13 sec.

No reg 14.91
ADMM 14.66
PDS 6.63
GFBS 7.66
PIPA 15.19

Table – SNR (dB)
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Metal

Groundtruth No reg ADMM

PDS GFBS PIPA

Figure – Abundance map of metal after 13 sec.

No reg 4.90
ADMM 7.57
PDS -0.08
GFBS 0.05
PIPA 7.06

Table – SNR (dB)
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