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Interior Point Methods

Many problems in signal/image processing (image restoration, enhancement,
denoising/deblurring, spectral unmixing) can be formulated as constrained
minimization problems — need efficient methods for solving those.
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minimization problems — need efficient methods for solving those.

Constrained Problem
Po: minimize f(x)
xXERN

s.t. (Vie{l,...,p}) ci(x)<0

where
m f:R" =] — oo, +00] convex
m (Vie{l,...,p}) ¢ :R"—] — 00, +0o0] convex, smooth

How to minimize f while ensuring that every iterate is feasible ?
— Add a barrier function
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Logarithmic Barrier

Constrained Problem

Po: minimize f(x)
xERN
s.t. (Vie{1,...,p}) ci(x)<0
4

Unconstrained Subproblem

P
P mi;\eiggnize f(x) — u;'n(— ci(x))

— 400 as ¢i(x) = 0~

Where o > 0 is the barrier parameter.

Po is replaced by a sequence of subproblems (P;);en-
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Logarithmic Barrier

Constrained Problem

Po: minimize f(x)
xERN
s.t. (Vie{1,...,p}) ci(x)<0
i

P
Pu: minimize f(x) — MZ"‘(— ci(x))

xERM
i=1

— 400 as ¢i(x) = 0~

Where o > 0 is the barrier parameter.

Po is replaced by a sequence of subproblems (P;);en-
= Subproblems are solved approximately for a sequence p; — 0.
m Main advantage : every iterate is feasible.
m Primal-dual algorithm : superlinear convergence for NLP. [Gould et al., 2001]
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Logarithmic Barrier

Constrained Problem

Po: minimize f(x)
xERN
s.t. (Vie{1,...,p}) ci(x)<0
i

P
Pu: minimize f(x) — MZ"‘(— ci(x))

xERM
i=1

— 400 as ¢i(x) = 0~

Where o > 0 is the barrier parameter.

Po is replaced by a sequence of subproblems (P;);en-
= Subproblems are solved approximately for a sequence p; — 0.
m Main advantage : every iterate is feasible.
m Primal-dual algorithm : superlinear convergence for NLP. [Gould et al., 2001]
X

Require the inversion of an n X n matrix at each step : medium size applications.
X First or second order methods : limited to smooth functions. [Armand et al., 2000]
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Problem of Interest

Quality of the solution and robustness against noise can be improved by adding a
non-differentiable term (41, TV, ...).

Composite Constrained Problem

Po: minimize f(x)+ g(x)
XERN
s.t. (Vie{1,...,p}) ci(x)<0
where
m f:R" =] — 00, +00] convex, non-differentiable
m g :R" ] — 00, +00] convex, smooth

m (Vie{l,...,p}) ¢i : R" =] — oo, +00] convex, smooth
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Problem of Interest

Quality of the solution and robustness against noise can be improved by adding a
non-differentiable term (41, TV, ...).

Composite Constrained Problem

Po : mini%'lize f(x) + g(x)
xERN
s.t. (Vie{l,...,p}) ci(x) <0

where
m f:R" =] — 00, +00] convex, non-differentiable
m g :R"—] — 00, +0o0] convex, smooth

m (Vie{l,...,p}) ¢i : R" =] — oo, +00] convex, smooth

How to address the non-smooth term while ensuring that every iterate is feasible ?
— Combine the logarithmic barrier method with proximal tools.
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Notation and Definitions

m Let ST(RVN) be the set of symmetric positive definite matrices of RVXN,
m  The weighted norm induced by U € SH(RV) is |||y = 1/(. | U.).

m Let To(RN) denote the set of proper lower semicontinuous convex functions

from RN to | — oo, +00].

The proximal operator ? proxf,’(x) of f € Mo(RN) at x € RN relative to the metric
induced by U € ST(RN) is the unique vector y € RN such that

1 , 1
FO) + 51y = Iy :y'EHH{N F(y)+ Sy = x| Uly = x)-

a. http ://proximity-operator.net/

Example :
m Indicator function : projection.

m {1 norm : soft-thresholding.
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Proposed Method

Proposed Approach

Py is replaced by a sequence of subproblems (Puj)jeN

Unconstrained Subproblems

P
Py; mini%ize f(x) + g(x)— p.jZln(— ci(x))

X€e
i=1

smooth

Our algorithm comprises two interlocked loops.

m Given pj > 0, (xj k)« is produced via several forward-backward (proximal
gradient) steps.

m Once x;  is close enough to the solution of P, the barrier parameter p; is
updated.
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Iteration Scheme

Forward-Backward Step

For j fixed,
Aj,k —

1
Xj k+1 = prOX,ijk,r(Xj,k = Y.kA Vou; (x,£))

where 0, (x) = g(x) — iy 3 In(—ci(x)).
i=1
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Iteration Scheme

Forward-Backward Step

For j fixed,
Ak

—il
Xkt = Prox, e (X k = Yk A; i Veow; (X.k))

P
where @, (x) = g(x) — ;3 In(—ci(x).
i=1

m Gradient step on the smooth term;
u
u
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Iteration Scheme

Forward-Backward Step

For j fixed,

Aj, 1
Xj k1 = Proxvj’:f(Xj,k = Yk A Vo (,k))
P
where ¢, (x) = g(x) — pj > In(—ci(x)).
i=1

m Gradient step on the smooth term;
m Proximal step on the non-differentiable function f;
u
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Iteration Scheme

Forward-Backward Step

For j fixed,
Ajk

1
Xj k+1 = PYOXWj,kf(Xj,k = Yk Ak Vo (5,k))

P
where @, (x) = g(x) — 15 3 In(—ci(x).
i=1

Gradient step on the smooth term;
Proximal step on the non-differentiable function f;

Preconditioner A; , for acceleration [Chouzenoux et al., 2016] ;
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Iteration Scheme

Forward-Backward Step

For j fixed,
Aj k

—1
Xjher1 = Proxy e (% k = Yk A; ik Veu; (05,6))

P
where @, (x) = g(x) — ;3" In(—ci(x).
i=1

m Gradient step on the smooth term;
m Proximal step on the non-differentiable function f;

= Preconditioner A; , for acceleration [Chouzenoux et al., 2016] ;

m Stepsize 7« > 0 found using a backtracking strategy [Salzo, 2017] since Pu; is
not Lipschitz-differentiable.
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Algorithm

Initialization

Let ¥ > 0, (4,0) €]0,1[%, o > O;
| Initialize xg,0 such that (Vi € {1,...,p}) ci(x0,0) < 0;

For j=0,1,...
For k =0,1,...
Choose Aj i satisfying a boundedness condition ;
For I =0,1,...
o A - -1 i
& o = prox_pt (5.6 = 70" AL Vo, (%.6));

Stop if the backtracking condition is met;

ol .
Xj, k1 = >I<Jk
Yk = 76"
Stop if precision conditions are met;

Xj+1,0 = Xj k41,
L Update pj;
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Theoretical Results

The set of solutions to Py is nonemtpy and bounded ;

f, g and the constraints are convex, g is Lipschitz-differentiable and the
constraints are continuously twice-differentiable ;

The strict interior of the feasible set is nonempty ;

(Vj € N) f + ¢y, is a Kurdyka-Lojasiewicz (KL) function ;
(Vj € N) (Aj «)k are bounded from above and from below ;
limj oo ptj =0 and (Vi € {1,...,4}) limj_ o € j/pj = 0.

Convergence

Under some mild technical assumptions :
m for all j € N, (xj x)ken converges to a solution to Py, ;
= (xj,0)jen is bounded and every cluster point of it is a solution to P ;

= if in addition strict complementarity holds, and if there exists i € {1,..., p} such
that ¢; is strictly convex (or alternatively, for linear constraints, if some full rank
property is satisfied) then (xj,0)jen converges to a solution to Po.
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Hyperspectral Unmixing Model

Optimization Problem

p
- Q )
minimize sI1Y = SX||5+ & WX;
XERPXn 2l 112 ; [I(WX)all2
P
s.t. (Vie{l,...,n}) S Xi; <1

(9 € {1, PR)% € {1y n}) Xy > 0

m p, n, s : number of endmembers, pixels, spectral bands
m Y € RSX" : observation

S € RSXP : library

X € RPX" : abundance matrix

W € R" " : orthogonal wavelet basis

[I(.)dll1 : €1 norm of the detail wavelet coefficients
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Experimental Setting

Realistic Data Simulation

m Urban! data set : p = 6 endmembers (known spectral signatures), s = 162
spectral bands, n = 256 x 256 pixels

m Gaussian noise : 02 = 4.1 x 1073,

Tree

1. http ://www.escience.cn/people/feiyunZHU /Dataset_GT.html
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Experimental Setting

Realistic Data Simulation

m Urban! data set : p = 6 endmembers (known spectral signatures), s = 162
spectral bands, n = 256 x 256 pixels — large-scale pb : > 3.9 x 10° variables.
= Gaussian noise : 02 = 4.1 x 1073,
Reconstruction Model
= Regularization weight : k = 102,

m W : orthogonal Daubechies 4 wavelet decomposition over 2 resolution levels.

1. http ://www.escience.cn/people/feiyunZHU /Dataset_GT.html
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Experimental Setting

Realistic Data Simulation

m Urban! data set : p = 6 endmembers (known spectral signatures), s = 162
spectral bands, n = 256 x 256 pixels — large-scale pb : > 3.9 x 10° variables.

= Gaussian noise : 02 = 4.1 x 1073,
Reconstruction Model
= Regularization weight : k = 102,
m W : orthogonal Daubechies 4 wavelet decomposition over 2 resolution levels.

Algorithm Parameters

u Variable metric : A;j  := Vzapuj(xj,k) [Becker et al., 2012].

u The barrier parameter (11;);en and the stopping criteria {¢;,;/11}ieq1,... 43 follow
a geometric decrease.

1. http ://www.escience.cn/people/feiyunZHU /Dataset_GT.html
Corbineau, Chouzenoux, Pesquet ICASSP 2018 13 /22
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Experimental Setting

Realistic Data Simulation

m Urban! data set : p = 6 endmembers (known spectral signatures), s = 162
spectral bands, n = 256 x 256 pixels — large-scale pb : > 3.9 x 10° variables.

= Gaussian noise : 02 = 4.1 x 1073,
Reconstruction Model

= Regularization weight : k = 102,

m W : orthogonal Daubechies 4 wavelet decomposition over 2 resolution levels.
Algorithm Parameters

= Variable metric : A;j x 1= Vzapuj(xj,k) [Becker et al., 2012].

u The barrier parameter (11;);en and the stopping criteria {¢;,;/11}ieq1,... 43 follow
a geometric decrease.

Implementation

= Matlab R2016b, Intel Xeon 3.2 GHz processor and 16 GB of RAM.

m Code will be available soon on https://github.com/mccorbineau.

1. http ://www.escience.cn/people/feiyunZHU /Dataset_GT.html
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Comparison

State-of-the-Art Algorithms

No reg : interior point least squares algorithm without regularization
[Chouzenoux et al., 2014]

ADMM : alternating direction of multipliers method [Setzer et al., 2010]
PDS : primal-dual splitting algorithm [Combettes et al., 2014]
GFBS : generalized forward-backward splitting algorithm [Raguet et al., 2013]
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Evaluation Metric

Signal-to-Noise Ratio

P = —
[1Xi — Xill3 [1Xi = Xill3
SNR = —10log;, —_= i SNR; = —10logyy | —=——
Z: [1Xi]12 X113
i=1

where X; is the true abundance map of the it" endmember.

Distance from the lterates to the Solution

[,k — xooll2
[l xco [I2

where x is the vectorization of X and x~ is obtained after a very large number of
iterations.
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Quantitative Results

m No reg : SNR = 1.96 dB / With regularization : SNR = 3.65 dB

ol ‘
2 i
ol
~
s et —PIPA
=~ ADMM
-6 1356 -o-PDS
——GFBS
0 10 30 40 50
Time (s)

i — zooll/llzoc

o

o o

o

= PIPA
o~ ADMM
4 - PDS
2]
X
4l
0 500 1000 1500 2000 2500 3000
Time (s)

FIGURE — Left : global SNR versus time. Right : distance from the iterates to the solution versus time.

\ Asphalt Road  Grass Tree Roof Metal Dirt

No reg 10.12 11.21 11.86 14.91 4.90 13.68
ADMM 6.75 11.47 1256 14.66 7.57 11.47
PDS 2.06 3.33 4.73 6.63 -0.08 10.27
GFBS 2.17 3.57 4.76 7.66 0.05 10.31
PIPA 10.98 11.70 12.73 15.19 7.06 14.57

TABLE — SNR (dB) for all endmembers after 13 sec.

Corbineau, Chouzenoux, Pesquet
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No reg | 10.12

‘ ADMM 6.75
Groundtruth PDS 2.06
GFBS 2.17

PIPA 10.98

TABLE — SNR (dB)

PDS GFBS PIPA

FIGURE — Abundance map of asphalt road after 13 sec.
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No reg | 11.21
ADMM | 11.47

3 2de
Groundtruth

PDS 3.33
GFBS 3.57
PIPA 11.70

TABLE — SNR (dB)

PDS GFBS

FIGURE — Abundance map of grass after 13 sec.
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No reg
ADMM
PDS
GFBS
PIPA

13.68
11.47
10.27
10.31
14.57

PDS GFBS PIPA

FIGURE — Abundance map of dirt after 13 sec.
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Conclusion

Application of a new proximal interior
point algorithm to hyperspectral unmixing
with a non-differentiable regularization.

m Convergence guaranteed under mild assumptions.

m Possibility to include an arbitrary preconditioner.

m Good performance in the context of a large-scale image recovery application.
— Extension of the convergence proof to inexact proximity operator.

—» Other applications.
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Stopping Criteria

Backtracking [Salzo, 2017]

For j and k fixed, the backtracking procedure stops if :
<l ol v < 0 o 2
u; (%5 1) — i (X5,6) — <Xj,k — Xk | ‘Puj(xj,k)> < %ij,k —%.klla;

If f := 0, Armijo linesearch along the steepest direction.
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Stopping Criteria

Backtracking [Salzo, 2017]

For j and k fixed, the backtracking procedure stops if :
<l ol v < 0 o 2
Pus (% 1) = Dy (x5.6) = (R = ik | Vepp;(x3.6)) < %IIX-,k = X klla; ,

If f := 0, Armijo linesearch along the steepest direction.

Accuracy for Solving Py,

The barrier parameter is decreased as soon as the following criteria are met :

1%,k = Xj 41l < €1, ﬁllAj,k(Xj,k =X k+1)ll < €2,
P P

Ci(Xj,k+1) Vei(x, k)= Vil k+1)
1= =

where {(e;,j)jen}ieq1,....4y and (;)jen are strictly positive sequences converging to 0
such that (Vi € {1,...,4}) lim € j/p; =0.
J—o0
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No reg | 11.86
ADMM | 12.56

Groundtruth PDS 4.73
GFBS 4.76
PIPA 12.73

TABLE — SNR (dB)

GFBS

FIGURE — Abundance map of tree after 13 sec.

Corbineau, Chouzenoux, Pesquet ICASSP 2018 2/4



No reg | 14.91
ADMM | 14.66

R

Groundtruth

PDS 6.63
GFBS 7.66
PIPA 15.19

TABLE — SNR (dB)

GFBS PIPA

FIGURE — Abundance map of roof after 13 sec.
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No reg 4.90

s . ADMM | 7.57
Groundtruth PDS -0.08
GFBS 0.05

PIPA 7.06

TABLE — SNR (dB)

PDS GFBS PIPA

FIGURE — Abundance map of metal after 13 sec.
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