

Joint CTC-Attention based End-to-End Speech Recognition using Multi-task Learning

Suyoun Kim¹², Takaaki Hori¹, and Shinji Watanabe

¹Mitsubishi Electric Research Laboratories (MERL) ²Carnegie Mellon University (CMU)

Carnegie Mellon University

ICASSP March 6 2017 Presenter: Suyoun Kim

© MERL

Carnegie Mellon <u>Univers</u>ity

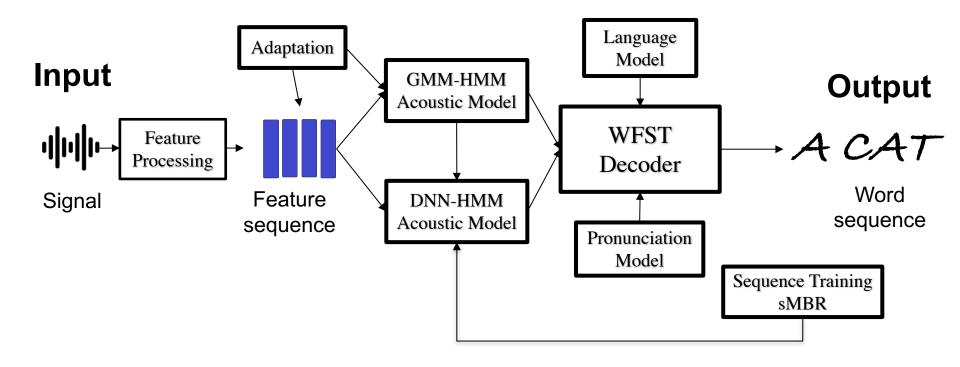
Outline

- Introduction and motivation
- Our proposed model: Joint CTC/Attention
- Experiments and results
- Conclusion

Carnegie Mellon University

Automatic Speech Recognition (ASR)

- ASR is transcribing speech signal to text
- Conventional ASR system is split into multiple subcomponents



Conventional ASR is Complicated

- Many sub-components
 - System development is complicated
 - Separate modeling may cause suboptimal
 - Decoding algorithm is complex

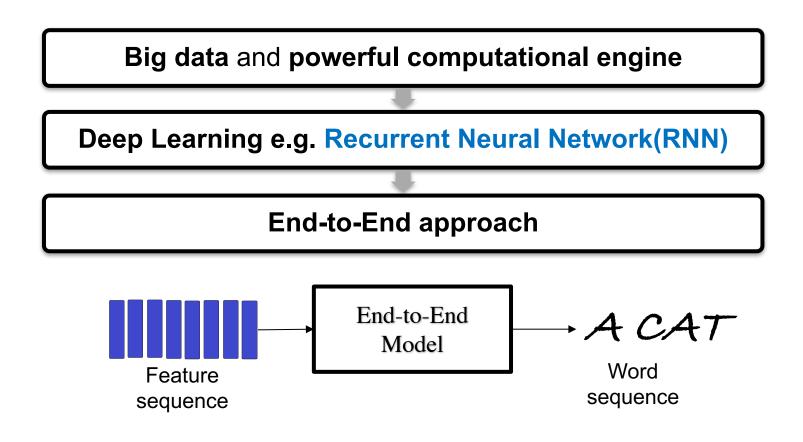
Many assumptions

- Assumes future process only depends on current state not previous state (Markovian, Stationary)
 - $P(s_{t+1}|s_{1:T}) = P(s_{t+1}|s_t)$
 - $P(s_{t_1+1} = i | s_{t_1} = j) = P(s_{t_2+1} = i | s_{t_2} = j)$ for any t_1 and t_2
- Assumes observations are independent given state (Conditional independent)

•
$$P(x_t|x_{1:T}, s_{1:T}) = P(x_t|s_t)$$

- Assumes all pronunciations can be represented by several phonemes (hand-crafted knowledge)
 - Linguistic expertise is required

End-to-End ASR is transcribing speech signal to text directly with a single model, one step training



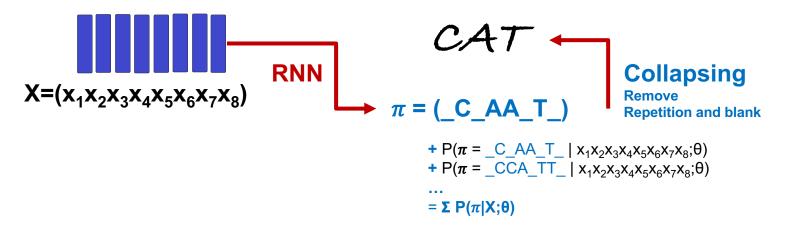
University

Our Joint CTC/Attention model for End-to-End ASR

- Key insight:
 - We can address the weaknesses of two main End-to-End approaches 1) CTC, and 2) Attention model by combining the two, as they have complementary characteristics

End-to-End approach 1: Connectionist Temporal Classification (CTC) [Graves(2006)]

- It uses intermediate label representation π allowing repetitions and blank labels "_"
- It maximizes the **total probability** of all possible label sequence π
- It uses forward-backward algorithm for the efficient training



Strength: There is no need for pronunciation model

Weakness: It still relies on conditional independence assumption, typically separate LM is combined

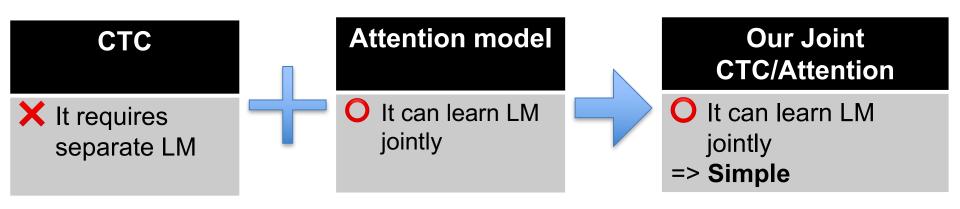
© MERL

Carnegie Mellon

University

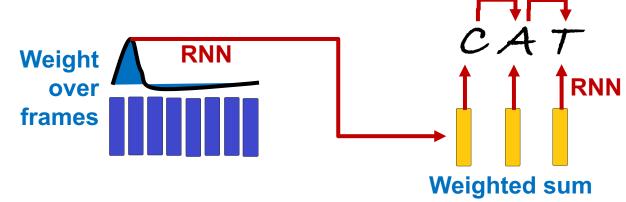
Our Joint CTC/Attention model for End-to-End ASR

- We keep our model **simple**
 - By using Attention model to learn LM jointly



End-to-End approach 2: Attention-based Encoder-Decoder [Chorowski(2014)]

- It uses two RNNs 1) Encoder 2) AttentionDecoder
- For each output step, it estimates weight vector(alignment) over inputs and then decoder uses weighted sum input
- Decoder estimates each label conditioning on previous outputs (no conditional independent assumption)

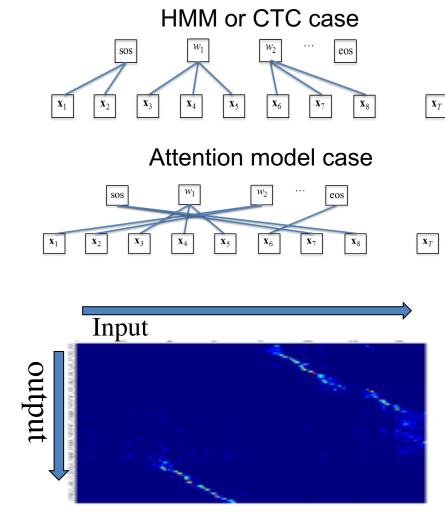


Strength: It can learn acoustic and language model within a single network **Weakness**: The alignment can be easily distorted

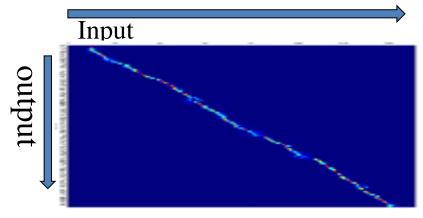
© MERL

We regularize input/output alignment of attention

- Unlike CTC, Attention model does not preserve order of inputs
- Our desired alignment in ASR task is monotonic
- Not regularized alignment makes the model hard to learn from scratch



Example of distorted alignment!

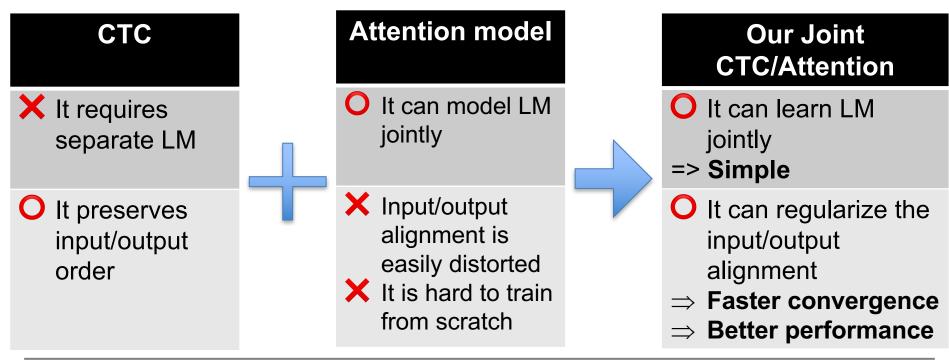


Example of monotonic alignment!

Universitv

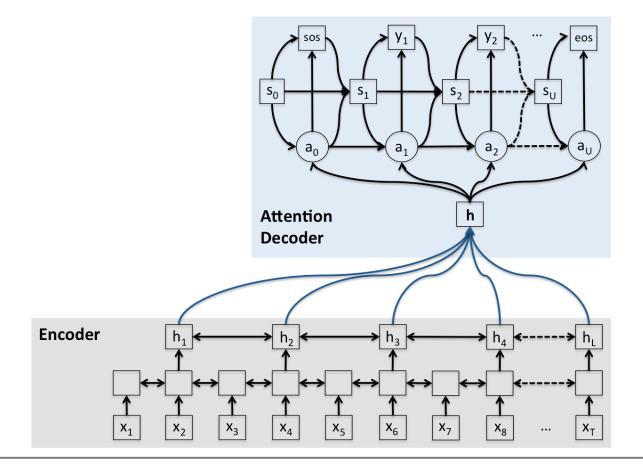
Our Joint CTC/Attention model for End-to-End ASR

- We keep our model **simple**
 - By using Attention model to learn inter-character dependencies jointly
- We improve the learning speed and performance
 - By using CTC to regularize the input/output alignment



Our Joint CTC/Attention model for End-to-End ASR

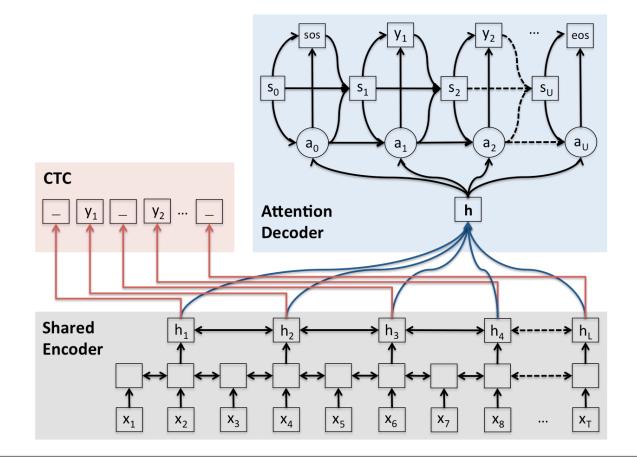
Standard Attention model



University

Mellon

• Multi-task learning framework



Universitv

Our Joint CTC/Attention model for End-to-End ASR

- 1. We share the encoder part
- 2. We train Attention model with CTC jointly

- 3. We use AttentionDecoder on decoding mode
 - The cost for CTC exists only on training mode

Carnegie Mellon University

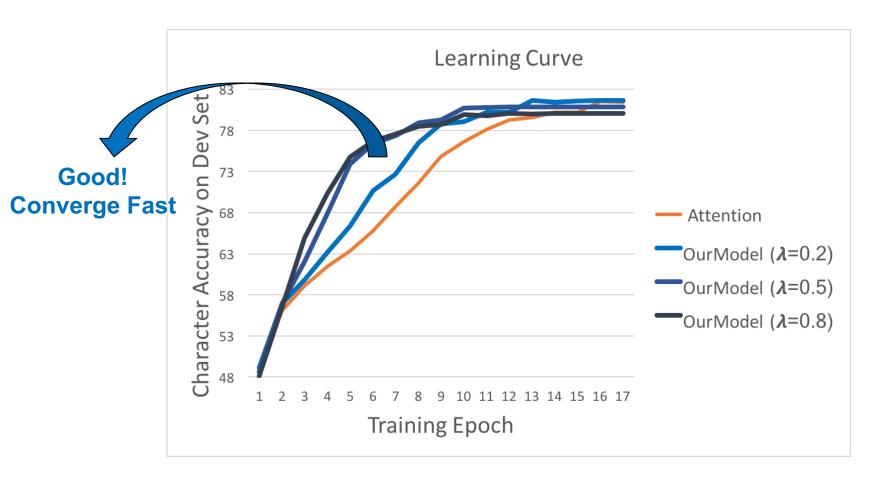
Outline

- Introduction and motivation
- Our proposed model: Joint CTC/Attention
- Experiments and results
- Conclusion

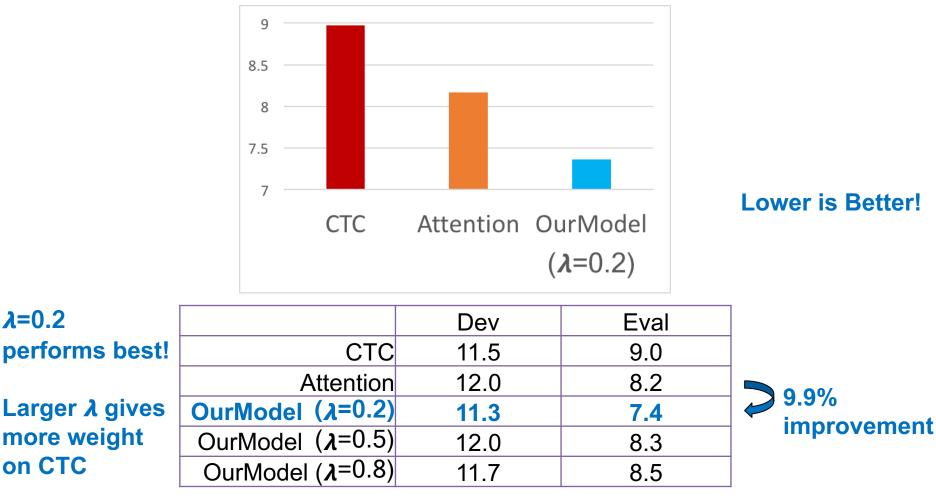
J**niversitv**

- Dataset
 - WSJ0 (si84) 15 hours clean
 - WSJ1 (si284) 80 hours clean
 - CHiME4 18 hours noisy
 - Input 120d filterbank (+d, +dd)
 - Output 32 distinct label (+26 char, + apostrophe, period, ..., sos/eos)
- Baselines
 - CTC 4 layer BLSTM (320 cells)
 - Attention 4 layer BLSTM encoder (320 cells) + 1 layer LSTM decoder (320 cells), location-based attention mechanism
- Our Joint CTC/Attention model
 - 4 layer BLSTM encoder (320 cells) + 1 layer LSTM decoder (320 cells)
 - With λ = {0.2 0.5 0.8}
- Evaluation
 - Character Error Rate (CER)

Faster convergence compared to Attention model

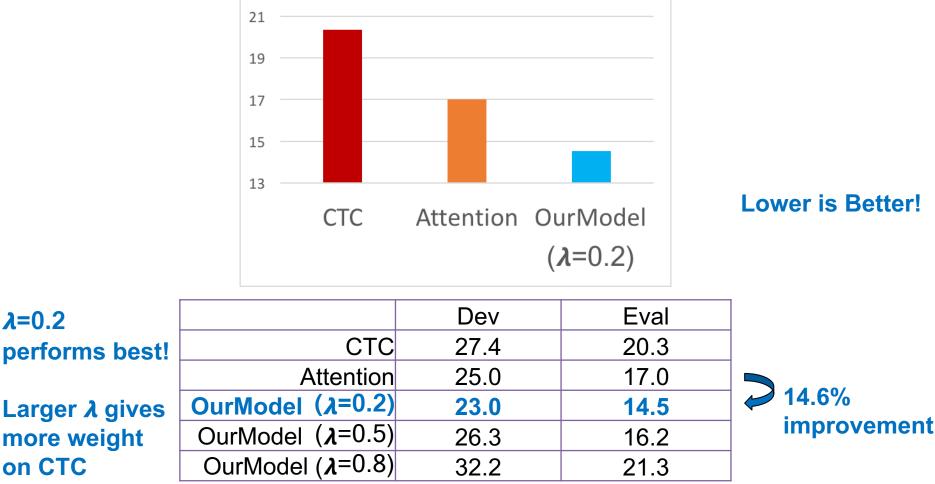


9.9% relative improvement of CER on WSJ1(80hr)

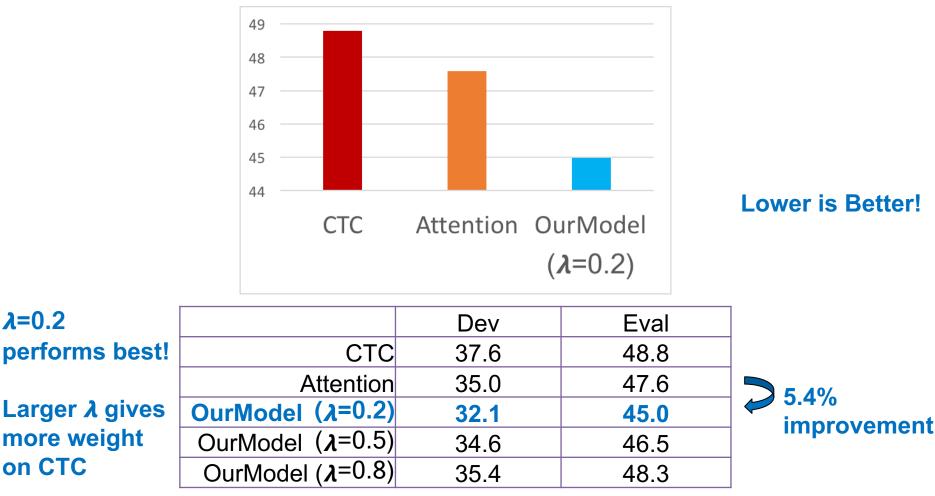


WER of our best system was 18.2% WER of (Bahdanau, et al. ICASSP 2016) was 18.6%

14.6% relative improvement of CER on WSJ0(15hr)



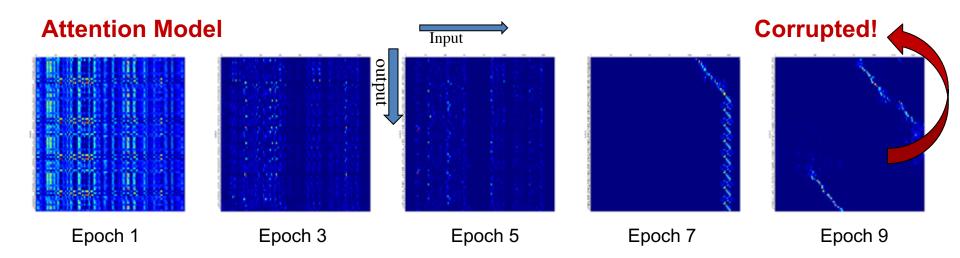
5.4% relative improvement of CER on CHiME4(18hr)



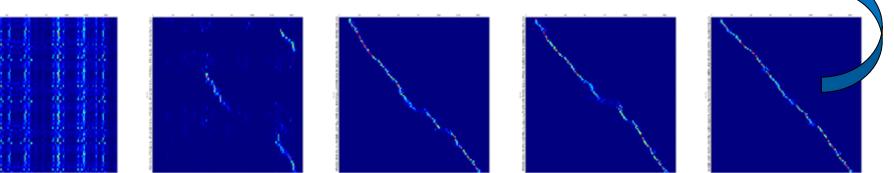
Good! Monotonic!

More robust input/output alignment of attention

• Alignment of one selected utterance from CHiME4



Our Joint CTC/Attention Model



© MERL

Carnegie Mellon University

Outline

- Introduction and motivation
- Our proposed model: Joint CTC/Attention
- Experiments and results
- Conclusion

iversity

Conclusion

- Joint CTC/Attention model
 - does not use any linguistic information
 - shows 5.4 14.6 % relative improvements in CER, compared to Attention-based Encoder-Decoder
 - speeds up learning process
 - requires small additional computational cost but only in training mode, not in decoding mode.
- Our framework can be applied to other seq2seq tasks where its alignment is monotonic

Carnegie Mellon

Universitv

Current research

- Further experimental results on Corpus of Spontaneous Japanese (CSJ) – 581hr
 - Achieved comparable performance to state-of-the-art

	task1	task2	task3
Attention (581h)	11.5	7.9	9.0
OurModel (581h)	10.9	7.8	8.3
OurModel2 (581h)	9.5	7.0	7.8
DNN/sMBR-hybrid (236h for AM/ 581h for LM)	9.0	7.2	9.6
CTC-syllable (581h)	9.4	7.3	7.5

Thank you!

Questions & Answers