

NON-SEPARABLE QUADRUPLE LIFTING STRUCTURE FOR FOUR-DIMENSIONAL INTEGER WAVELET TRANSFORM WITH REDUCED ROUNDING NOISE

Fairoza Amira Binti Hamzah*,

Taichi Yoshida*, Masahiro Iwahashi* *Nagaoka University of Technology, Japan

Two types of data compression

Lossless Data Compression in JPEG 2000

Rounding Noise in Lifting Structure of Integer Wavelet Transform

(example in double type)

Rounding Noise

Two Lifting Structure (example in 2D for double type)

Separable

Non-separable

	Separable	Non-separable		
Rounding Operators	8	4	Reduced!	5/21

Quadruple 1D IWT $A_1A_2A_3A_4$

z : delay

↓ 2 : downsampling by 2 A_1, A_2, A_3, A_4 : coefficients of filter bank

Possible combinations of the structures

How to find the best structure from the 2.092×10^{13} structures?

By maintaining the original lifting structure, which is $A_1A_2A_3A_4B_1B_2B_3B_4C_1C_2C_3C_4D_1D_2D_3D_4$ and turn it into the non-separable structure $A_1A_2(A_3A_4B_1B_2)_{2D}(B_3B_4C_1C_2)_{2D}(C_3C_4D_1D_2)_{2D}D_3D_4$

Comparison of the structures

4D DWT (9,7) Quadruple Lifting Structure:

Separable 4D (Existing I):

 $A_1A_2A_3A_4B_1B_2B_3B_4C_1C_2C_3C_4D_1D_2D_3D_4$ Non-separable 1D and 3D for 4D (Existing II):

 $A_1A_2A_3A_4(B_1B_2C_1C_2D_1D_2)_{3D}(B_3B_4C_3C_4D_3D_4)_{3D}$ Non-separable 1D and 2D for 4D (Proposed):

 $A_1A_2(A_3A_4B_1B_2)_{2D}(B_3B_4C_1C_2)_{2D}(C_3C_4D_1D_2)_{2D}D_3D_4$

Structure	Rounding Operators
Separable 4D (Existing I)	192
Non-separable 3D (Existing II)	96
Non-separable 2D (Proposed)	96

Separable 4D (Existing I)

14/21

4D Wavelet composed of 1D and Non-separable 3D (Existing II)

4D Wavelet Composed of 1D and Non-separable 2D (Proposed)

96 rounding operators

16/21

Input Data

MRI data Size: 50 x 224 x 224 x 16 Random signal Size: 128 x 128 x 32 x16

Example

Example

Auto Regressive Model (AR) Size: 256 x 256 x 32 x 16

Example

Evaluation: Average variance of rounding noise in each frequency band

Evaluation: Rounding noise in each frequency band

Evaluation: Coding performance in lossy mode

20/21

Conclusion

Structure	Rounding Noise	Coding Performance
Separable 4D (Existing I)	${\swarrow}{\swarrow}$	$\frac{1}{2}$
Non-separable 3D (Existing II)	\bigstar	\bigstar
Non-separable 2D (Proposed)	$\bigstar \bigstar \bigstar$	$\bigstar \bigstar \bigstar$

Between the Existing I and Proposed methods, Number of rounding operators: 50 [%]↓ Variance of rounding noise: 16.09 [%]↓ Coding performance: 2.57[dB]↑

APPENDIX

How to derive the non-separable?

Derivation of the 'non-separable' structure: Basic properties for modification

Derivation of the 'non-separable' structure: Derivation process for 2D

Same process is applied to 3D and 4D

How to find the best structure from the 2.092×10^{13} structures?

Create six **"Rules"** to exclude Unnecessary structures

focus on only 7 candidates

find the **Best** structure which has the minimum rounding noise

The six "Rules"

Permitted

- $(A_1A_2)(A_3A_4)(B_1B_2)(B_3B_4)(C_1C_2)(C_3C_4)(D_1D_2)(D_3D_4)$ 4 $A_1A_2(A_3A_4B_1B_2)_{2D}B_3B_4C_1C_2C_3C_4D_1D_2D_3D_4$ 5 6
 - $A_1A_2(A_3A_4B_1B_2C_1C_2)_{3D}B_3B_4C_3C_4D_1D_2D_3D_4$

7 Possible Structures

 $A_1 A_2 A_3 A_4 B_1 B_2 B_3 B_4 C_1 C_2 C_3 C_4 D_1 D_2 D_3 D_4$

Original

- $1 A_1 A_2 (A_3 A_4 B_1 B_2)_{2D} B_3 B_4 C_1 C_2 C_3 C_4 D_1 D_2 D_3 D_4$
- **2** $A_1A_2A_3A_4B_1B_2(B_3B_4C_1C_2)_{2D}C_3C_4D_1D_2D_3D_4$
- $(3) A_1A_2A_3A_4B_1B_2B_3B_4C_1C_2(C_3C_4D_1D_2)_{2D}D_3D_4$
- $(4) A_1A_2(A_3A_4B_1B_2)_{2D}(B_3B_4C_1C_2)_{2D}C_3C_4D_1D_2D_3D_4$
- 5 $A_1A_2A_3A_4B_1B_2(B_3B_4C_1C_2)_{2D}(C_3C_4D_1D_2)_{2D}D_3D_4$
- 6 $A_1A_2(A_3A_4B_1B_2)_{2D}B_3B_4C_1C_2(C_3C_4D_1D_2)_{2D}D_3D_4$
- 7 $A_1A_2(A_3A_4B_1B_2)_{2D}(B_3B_4C_1C_2)_{2D}(C_3C_4D_1D_2)_{2D}D_3D_4$

The rounding noise is experimentally investigated

Autoregressive model

AR model is created to make spectrum random input to become the same as image spectrum

Analysis on Experimental Results

Effect of One Rounding Operator

Tested data: MRI [R-D Curve]

Why Wavelet?

International Standard of Image Compression

[M. Vetterli and C. Herley, "Wavelet and Filter Banks: Theory and Design", IEEE Trans. On Signal Processing, Vol. 40, No. 9, 1992]

Existing 4D Data Compression Methods

- fMRI Image
 - Method: Motion Compensation [V. Sanchez et al, 2009]
- fMRI Image
 - Method: JPEG 2000 [H. G. Lalgudi et al, 2005]
- 4D Remote Sensing
 - Method: JPEG 2000 [J. M. Gomez et al, 2010]
- 4D Geometry
 - Method: Lifting Wavelet Transform [Y. Wang et al, 2006]

Proposal

		Quadruple (9,7)
2D	Separable	JPEG 2000
	Non-separable	ICIP '09
3D	Separable	JPEG 2000
	Non-separable	APSIPA '13
4D	Separable	JPEG 2000
	Non-separable	ICASSP '17

- **[ICIP '09]** M. Iwahashi, H. Kiya, "Non Separable 2D Factorization of Separable 2D DWT for Lossless Image Coding," *IEEE Proc. International Conference on Image Processing (ICIP),* pp.17-20, Nov. 2009.
- **[APSIPA '13]** M. Iwahashi, T. Orachon, H. Kiya, "Non Separable 3D Lifting Structure Compatible with Separable Quadruple Lifting DWT", Asia-Pacific Signal and Information Processing Association 2013 Annual Summit and Conference (APSIPA ASC), OS.26, IVM.11, no.4, pp.1-4, Oct. 2013.

Implementation of Integer Wavelet Transform in JPEG 2000 with Lifting Structure

Advantage	Perfect reconstructionSignal is recovered without loss
Problem	 Rounding noise existed in the lifting structure
Туре	 Lossless => Double (5,3) Lossy => Quadruple (9,7)

Data trends: The increased of data dimensions

