ICASSP 2017, New Orleans

イロト イポト イヨト イヨト

Pairwise Learning using Multi-lingual Bottleneck Features for Low-resource Query-by-example Spoken Term Detection

Yougen Yuan^{1,2}, Cheung-Chi Leung², Lei Xie¹, Hongjie Chen¹, Bin Ma², Haizhou Li^{2,3}

¹School of Computer Science, Northwestern Polytechnical University, Xi'an, China ²Institute for Infocomm Research, A*STAR, Singapore ³Department of ECE, National University of Singapore, Singapore

March 9, 2017

Yougen Yuan, NPU, China

Outline

- Background
- Motivation and contribution

2 Methods

- Multi-lingual bottleneck features (BNFs)
- Pairwise learning
- Query-by-example spoken term detection (QbE-STD)

3 Experiments

- Data and evaluation
- Results and analysis

Conclusions

・ 同 ト ・ ヨ ト ・ ヨ ト

Background Motivation and contribution

Outline

Background

Motivation and contribution

2 Methods

- Multi-lingual bottleneck features (BNFs)
- Pairwise learning
- Query-by-example spoken term detection (QbE-STD)

3 Experiments

- Data and evaluation
- Results and analysis

Conclusions

ъ

Background Motivation and contribution

Problem description of low-resource query-by-example spoken term detection (QbE-STD)

- A search problem for the occurrence of a spoken query in audio archives.
- Limited training data in low-resource scenarios.
- Difficult to give utterances with labels if no prior linguistic knowledge in the language.

くロト (過) (目) (日)

Background Motivation and contribution

Previous work

- Extract unsupervised acoustic features directly in low-resource target languages [1, 2, 3, 4].
- Extract posterior or bottleneck features (BNFs) from neural networks (NNs) trained using high-resource non-target languages [5, 6, 7, 8, 9].

Background Motivation and contribution

Outline

Introduction

Background

Motivation and contribution

2 Methods

- Multi-lingual bottleneck features (BNFs)
- Pairwise learning
- Query-by-example spoken term detection (QbE-STD)

3 Experiments

- Data and evaluation
- Results and analysis

Conclusions

ъ

Background Motivation and contribution

- Pairwise learning
 - Training NNs with paired examples.
 - Successful for various tasks, including face verification [10], sentence similarity [12], phone discrimination [11], and our previous study [13] on a word discrimination task.
- Multi-lingual BNFs
 - A kind of compact representations.
 - More language-independent and more flexible for rapid language adaptation; especially in low-resource languages.

Background Motivation and contribution

- Pairwise learning
 - Training NNs with paired examples.
 - Successful for various tasks, including face verification [10], sentence similarity [12], phone discrimination [11], and our previous study [13] on a word discrimination task.
- Multi-lingual BNFs
 - A kind of compact representations.
 - More language-independent and more flexible for rapid language adaptation; especially in low-resource languages.

くロト (過) (目) (日)

Background Motivation and contribution

- The first attempt to use pairwise learning based on multi-lingual BNFs.
- The first attempt to use pairwise learning for QbE-STD.

ヘロト 人間 ト ヘヨト ヘヨト

Multi-lingual bottleneck features (BNFs) Pairwise learning Query-by-example spoken term detection (QbE-STD)

ヘロト 人間 ト ヘヨト ヘヨト

Outline

- Background
- Motivation and contribution

2 Methods

• Multi-lingual bottleneck features (BNFs)

- Pairwise learning
- Query-by-example spoken term detection (QbE-STD)

3 Experiments

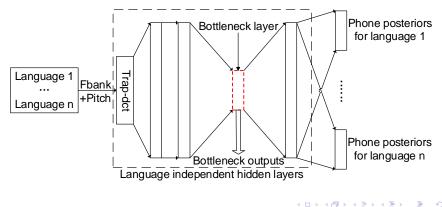
- Data and evaluation
- Results and analysis

Conclusions

Multi-lingual bottleneck features (BNFs) Pairwise learning Query-by-example spoken term detection (QbE-STD)

Multi-lingual BNF extraction

 Train a multi-lingual bottle-type NN from non-target languages.



Multi-lingual bottleneck features (BNFs) Pairwise learning Query-by-example spoken term detection (QbE-STD)

ヘロト 人間 ト ヘヨト ヘヨト

Outline

- Background
- Motivation and contribution

Methods

- Multi-lingual bottleneck features (BNFs)
- Pairwise learning
- Query-by-example spoken term detection (QbE-STD)

3 Experiments

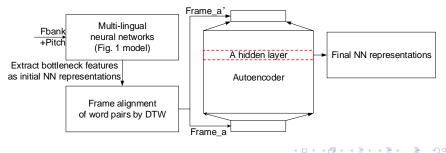
- Data and evaluation
- Results and analysis

Conclusions

Multi-lingual bottleneck features (BNFs) Pairwise learning Query-by-example spoken term detection (QbE-STD)

Pairwise learning with an autoencoder

- Align two sequences of multi-lingual BNFs with DTW.
- Train a pre-trained AE with Mean Squared Error (MSE) using aligned frame pairs.
- Extract newly learned feature representation from an internal hidden layer of trained NN.



Multi-lingual bottleneck features (BNFs) Pairwise learning Query-by-example spoken term detection (QbE-STD)

ヘロト 人間 ト ヘヨト ヘヨト

Outline

- Background
- Motivation and contribution

Methods

- Multi-lingual bottleneck features (BNFs)
- Pairwise learning
- Query-by-example spoken term detection (QbE-STD)

3 Experiments

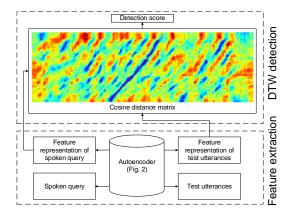
- Data and evaluation
- Results and analysis

Conclusions

Multi-lingual bottleneck features (BNFs) Pairwise learning Query-by-example spoken term detection (QbE-STD)

→ Ξ → < Ξ →</p>

NN-based template matching method for QbE-STD



Data and evaluation Results and analysis

Outline

- Background
- Motivation and contribution

2 Methods

- Multi-lingual bottleneck features (BNFs)
- Pairwise learning
- Query-by-example spoken term detection (QbE-STD)

3 Experiments

- Data and evaluation
- Results and analysis

Conclusions

э

ヘロト 人間 ト ヘヨト ヘヨト

Data and evaluation Results and analysis

• Target language (for QbE-STD)

Corpus	Training set (No. of word pairs)	Keyword set (No. of examples)	Test set (No. of utterances)
TIMIT [3, 4]	10,000	346	944
Switchboard	100,000	346	100

• Non-target languages (for multi-lingual BNFs extractor)

- HKUST Mandarin Chinese (LDC2005S15; 170hr)
- Fisher Spanish (LDC2001S01; 152hr)

ъ

Data and evaluation Results and analysis

• Target language (for QbE-STD)

Corpus	Training set (No. of word pairs)	Keyword set (No. of examples)	Test set (No. of utterances)
TIMIT [3, 4]	10,000	346	944
Switchboard	100,000	346	100

Non-target languages (for multi-lingual BNFs extractor)

- HKUST Mandarin Chinese (LDC2005S15; 170hr)
- Fisher Spanish (LDC2001S01; 152hr)

æ

イロト イポト イヨト イヨト

Data and evaluation Results and analysis

Metrics of evaluation

- MAP : the mean average precision of each query in the test set.
- P@N : the average precision of the top N utterances where N is the number of the correct hit utterances in test set.
- P@5/P@10 : the average precision of the first five or ten ranked utterances.

くロト (過) (目) (日)

Data and evaluation Results and analysis

Outline

- Background
- Motivation and contribution

2 Methods

- Multi-lingual bottleneck features (BNFs)
- Pairwise learning
- Query-by-example spoken term detection (QbE-STD)

3 Experiments

- Data and evaluation
- Results and analysis

Conclusions

э

ヘロト 人間 ト ヘヨト ヘヨト

Data and evaluation Results and analysis

QbE-STD on TIMIT and Switchboard

Corpus	Representation	No pairwise training	Pairwise training
		(MAP/P@N/P@10)	(MAP/P@N/P@10)
TIMIT	MFCCs	0.285/0.289/0.247	0.297/0.293/0.257
	BNFs (Mandarin)	0.494/0.459/0.413	0.571/0.538/0.467
	BNFs (Spanish)	0.540/0.512/0.446	0.594/0.561 /0.484
	BNFs (Multi-lingual)	0.552/0.524/0.461	0.594/0.561/0.490
Switchboard	MFCCs	0.232/0.200/0.232	0.258/0.236/0.260
	BNFs (Mandarin)	0.370/0.338/0.446	0.417/0.382/0.451
	BNFs (Spanish)	0.388/0.358/0.475	0.430/0.398/ 0.484
	BNFs (Multi-lingual)	0.400/0.365/0.485	0.435/0.404 /0.473

ъ

イロン 不同 とくほ とくほ とう

Data and evaluation Results and analysis

- Multi-lingual BNFs
 - Are much better than MFCCs.
 - Usually outperform the cross-lingual BNFs.
- Pairwise learning
 - Provides a more efficient feature representation for QbE-STD.
 - Usually hold the best performance with multi-lingual BNFs in the QbE-STD tasks.

ъ

Data and evaluation Results and analysis

- Multi-lingual BNFs
 - Are much better than MFCCs.
 - Usually outperform the cross-lingual BNFs.
- Pairwise learning
 - Provides a more efficient feature representation for QbE-STD.
 - Usually hold the best performance with multi-lingual BNFs in the QbE-STD tasks.

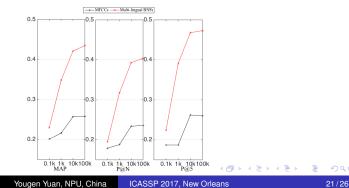
ъ

ヘロト 人間 ト ヘヨト ヘヨト

Data and evaluation Results and analysis

Dependence on the amount of word-pair supervision

- With more word pairs, pairwise learned NN feature representation gives a better performance.
- With 10,000 word pairs, pairwise learned features give comparable performance to those using all word pairs.



Data and evaluation Results and analysis

Effect of input features and frame alignment

 Regardless of either MFCCs or multi-lingual BNFs are used for frame-level DTW alignment, multi-lingual BNFs consistently provide much better QbE-STD results than MFCCs as input features.

Corpus	Input features	Features for alignment	
	of AE	MFCCs	BNFs (Multi-lingual)
TIMIT	MFCCs	0.285/0.289/0.247	0.320/0.314/0.274
	BNFs (Multi-lingual)	0.587/0.556/0.486	0.594/0.561/0.490
Switchboard	MFCCs	0.258/0.236/0.260	0.273/0.248/0.286
	BNFs (Multi-lingual)	0.432/0.395/ 0.483	0.435/0.404 /0.473

ヘロト ヘ戸ト ヘヨト ヘヨト

Conclusions and future work

- We have proposed to perform pairwise learning using multilingual BNFs of word pairs for QbE-STD.
- Pairwise learning makes the resulted features more capable in phonetic discrimination for a new target language.
 - Brings further performance improvement on low-resource QbE-STD tasks.
- In future work, we will investigate methods of word-level pairwise learning for this task, which avoids frame-level alignment of word pairs.

ヘロト 人間 ト ヘヨト ヘヨト

References I

- Yaodong Zhang and James R Glass. "Unsupervised spoken keyword spotting via segmental DTW on Gaussian posteriorgrams". In: *Proc. ASRU*. 2009, pp. 398–403.
- [2] Haipeng Wang et al. "An acoustic segment modeling approach to query-by-example spoken term detection". In: *Proc. ICASSP*. 2012, pp. 5157–5160.
- [3] Peng Yang et al. "Intrinsic spectral analysis based on temporal context features for query-by-example spoken term detection". In: *Proc. INTERSPEECH*. 2014, pp. 1722–1726.
- [4] Hongjie Chen et al. "Unsupervised bottleneck features for low-resource query-by-example spoken term detection". In: *Proc. INTERSPEECH*. 2016, pp. 923–937.

1

・ロト ・ 理 ト ・ ヨ ト ・

References II

- Javier Tejedor et al. "Comparison of methods for language-dependent and language-independent query-by-example spoken term detection". In: ACM Transactions on Information Systems 30.3 (2012), p. 18.
- [6] Luis J Rodriguez-Fuentes et al. "High-performance query-by-example spoken term detection on the SWS 2013 evaluation". In: *Proc. ICASSP*. 2014, pp. 7819–7823.
- [7] Yang Peng et al. "The NNI query-by-example system for mediaeval 2014". In: *Proc. MediaEval Workshop*. 2014.
- [8] Hou Jingyong et al. "The NNI query-by-example system for mediaeval 2015". In: *Proc. MediaEval Workshop*. 2015.
- Cheung-Chi Leung et al. "Toward high-performance language-independent query-by-example spoken term detection for mediaeval 2015: post-evaluation analysis". In: *Proc. INTERSPEECH*. 2016, pp. 3703–3707.

ъ

・ロト ・ 理 ト ・ ヨ ト ・

References III

- [10] Sumit Chopra, Raia Hadsell, and Yann LeCun. "Learning a similarity metric discriminatively, with application to face verification". In: *Proc. CVPR*. 2005, pp. 539–546.
- [11] Gabriel Synnaeve, Thomas Schatz, and Emmanuel Dupoux.
 "Phonetics embedding learning with side information". In: *Proc. SLT*. 2014, pp. 106–111.
- [12] Jonas Mueller and Aditya Thyagarajan. "Siamese recurrent architectures for learning sentence similarity". In: *Proc. AAAI*. 2016, pp. 2786–2792.
- [13] Yougen Yuan et al. "Learning neural network representation using cross-lingual bottleneck features with word-pair information". In: Proc. INTERSPEECH. 2016, pp. 788–792.

3

ヘロン 人間 とくほ とくほ とう