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Problem description of low-resource
query-by-example spoken term detection (QbE-STD)

@ A search problem for the occurrence of a spoken query in
audio archives.

@ Limited training data in low-resource scenarios.

@ Difficult to give utterances with labels if no prior linguistic
knowledge in the language.
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Previous work

@ Extract unsupervised acoustic features directly in
low-resource target languages [1, 2, 3, 4].

@ Extract posterior or bottleneck features (BNFs) from neural
networks (NNs) trained using high-resource non-target
languages [5, 6, 7, 8, 9].

Yougen Yuan, NPU, China ICASSP 2017, New Orleans



Introduction

Background
Motivation and contribution

Outline

0 Introduction

@ Motivation and contribution

igen Yuan, NPU, China ICASSP 2017, New Orleans



Introduction

Background
Motivation and contribution

Motivation

@ Pairwise learning

e Training NNs with paired examples.

@ Successful for various tasks, including face verification [10],
sentence similarity [12], phone discrimination [11], and our
previous study [13] on a word discrimination task.
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Motivation

@ Pairwise learning
e Training NNs with paired examples.
@ Successful for various tasks, including face verification [10],
sentence similarity [12], phone discrimination [11], and our
previous study [13] on a word discrimination task.

@ Multi-lingual BNFs
e A kind of compact representations.
e More language-independent and more flexible for rapid
language adaptation; especially in low-resource languages.
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Contribution

@ The first attempt to use pairwise learning based on
multi-lingual BNFs.

@ The first attempt to use pairwise learning for QbE-STD.
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Multi-lingual BNF extraction

@ Train a multi-lingual bottle-type NN from non-target

languages.
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Multi-lingual bottleneck features (BNFs)

Pairwise learning

Query-by-example spoken term detection (QbE-STD)

Pairwise learning with an autoencoder

@ Align two sequences of multi-lingual BNFs with DTW.

@ Train a pre-trained AE with Mean Squared Error (MSE)
using aligned frame pairs.

@ Extract newly learned feature representation from an
internal hidden layer of trained NN.

Frame_a’

Fbanki
— 7
+Pitch

Multi-lingual
neural networks
(Fig. 1 model)

Extract bottleneck features
as initial NN representations

Frame alignment
of word pairs by DTW

A hidden layer >

Final NN representations

Autoencoder

Frame_a
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Query-by-example spoken term detection (QbE-STD)

NN-based template matching method for QbE-STD

DTW detection
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Experiments

@ Target language (for QbE-STD)

Corpus Training set Keyword set Test set
(No. of word pairs) (No. of examples) (No. of utterances)
TIMIT [3, 4] 10,000 346 944
Switchboard 100,000 346 100
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Experiments

@ Target language (for QbE-STD)

Corpus Training set Keyword set Test set
(No. of word pairs) (No. of examples) (No. of utterances)
TIMIT [3, 4] 10,000 346 944
Switchboard 100,000 346 100

@ Non-target languages (for multi-lingual BNFs extractor)

e HKUST Mandarin Chinese (LDC2005S15; 170hr)
e Fisher Spanish (LDC2001S01; 152hr)
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Metrics of evaluation

MAP : the mean average precision of each query in the
test set.

P@N : the average precision of the top N utterances
where N is the number of the correct hit utterances
in test set.

P@5/P@10 : the average precision of the first five or ten
ranked utterances.
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QbE-STD on TIMIT and Switchboard

Corpus

Representation

No pairwise training
(MAP/P@N/P@10)

Pairwise training
(MAP/P@N/P@10)

TIMIT

MFCCs
BNFs (Mandarin)
BNFs (Spanish)
BNFs (Multi-lingual)

0.285/0.289/0.247
0.494/0.459/0.413
0.540/0.512/0.446
0.552/0.524/0.461

0.297/0.293/0.257
0.571/0.538/0.467
0.594/0.561/0.484
0.594/0.561/0.490

Switchboard

MFCCs
BNFs (Mandarin)
BNFs (Spanish)
BNFs (Multi-lingual)

0.232/0.200/0.232
0.370/0.338/0.446
0.388/0.358/0.475
0.400/0.365/0.485

0.258/0.236/0.260
0.417/0.382/0.451
0.430/0.398/0.484
0.435/0.404/0.473
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@ Multi-lingual BNFs

@ Are much better than MFCCs.
e Usually outperform the cross-lingual BNFs.
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Data and evaluation

Experiments Results and analysis

Analysis

@ Multi-lingual BNFs

e Are much better than MFCCs.

e Usually outperform the cross-lingual BNFs.
@ Pairwise learning

e Provides a more efficient feature representation for
QbE-STD.

e Usually hold the best performance with multi-lingual BNFs
in the QbE-STD tasks.
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Dependence on the amount of word-pair supervision

@ With more word pairs, pairwise learned NN feature
representation gives a better performance.
@ With 10,000 word pairs, pairwise learned features give
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Effect of input features and frame alignment

@ Regardless of either MFCCs or multi-lingual BNFs are
used for frame-level DTW alignment, multi-lingual BNFs
consistently provide much better QbE-STD results than
MFCCs as input features.

Corpus Input features Features for alignment
P of AE MFCCs BNFs (Multi-lingual)
TIMIT MFCCs 0.285/0.289/0.247 | 0.320/0.314/0.274
BNFs (Multi-lingual) | 0.587/0.556/0.486 | 0.594/0.561/0.490
. MFCCs 0.258/0.236/0.260 | 0.273/0.248/0.286
Switchboard s
BNFs (Multi-lingual) | 0.432/0.395/0.483 | 0.435/0.404/0.473
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Conclusions

Conclusions and future work

@ We have proposed to perform pairwise learning using
multilingual BNFs of word pairs for QbE-STD.

@ Pairwise learning makes the resulted features more
capable in phonetic discrimination for a new target
language.

e Brings further performance improvement on low-resource
QbE-STD tasks.

@ In future work, we will investigate methods of word-level
pairwise learning for this task, which avoids frame-level
alignment of word pairs.
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