RECOVERY OF SPARSE SIGNALS VIA BRANCH AND BOUND LEAST-SQUARES
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The proposed algorithm, BBLS:

Construct a tree whose nodes represent columns of coefficient matrix

. . Is a depth-first search scheme for sparse reconstruction.
A branch-and-bound search to traverse the tree in a depth-first manner

. selects different number of indices in each level according to a schedule.
Use a schedule L = [L4, ..., L] to control the size of the search space

Employ AOLS expressions to construct the tree n =64, m= 128 & ~ N(0,1), vary k for 1000 independent instances has guarantees for its achievable reconstruction probability.
A=B+1t' ,whereB ~ N(0,+) and t ~U(0,T) forT >0 is capable of highly accurate recovery even for correlated dictionaries.

Future work: performance analysis under hybrid dictionaries.
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