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Visible light images:

e Give color/relative luminance
information

e Contain detailed information of
the background
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LWIR images:
Visible"l:-:pg'hf Image _ e Can capture useful data in low
light conditions for night vision
applications

e Are unaffected by
illumination /environmental
variations

Visible light images:

e Give color/relative luminance
information

e Contain detailed information of
the background

Source: TNO Toet et al.*
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Fused Imége'
Fused LWIR visible light

images:

e Have information
redundancy

e Make a surveillance

system robust and
reliable

Source: TNO Toet et al. (1997)‘ z

How to obtain an optimal fused image?
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Previous studies:

¢ Developed objective measures of fusion performance
(Wang et al., 2008; Zhao et al.,
Chen and Varshney, 2007; Chen and Blum, 2009)

e Explored the impact of white noise and blur on fused images
(Chen and Blum, 2009; Liu et al., 2012)

e Studied the Natural Scenes Statistics in visible and LWIR images
(Yuming et al., 2015; Bovik, 2013; Moorthy and Bovik, 2011,

2011; Goodall et al., 2015; Morris et al., 2007)

Che-Chun et al.,

2007; Piella and Heijmans, 2003;
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@ Processing Models

@® Quality Assessment of Fused LWIR and Visible Images
Opinion Aware Image Quality Analyzer
Subjective Human Study

© Conclusion and Future Work
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Distortion and Fusion
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Distortions:

e Additive white
Gaussian noise

e Blur
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Distortions:
e Additive white
Gaussian noise
e Blur
e Non

uniformity
noise
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Distortions:

e Additive white
Gaussian noise
e Blur
e Non
uniformity
noise
Fusion methods:
e Average
e Gradient pyramid

e Shift-invariant discreet wavelet
transform with haar wavelet
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® Mean subtracted contrast normalized (MSCN) coefficients
e Paired product coefficients
e Log-derivative coefficients

e Steerable pyramid coefficients
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Fit the histogram of bandpass coefficients to the probability density
function of:

e the Generalized Gaussian Distribution (GGD) and
e the Asymmetric Gaussian Distribution (AGGD)

0.01r + AWG ||
o blur

JPEG

or x NU |
org

138 features per image
projected in a 2D space
using Principal Component
Analysis.
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@® Quality Assessment of Fused LWIR and Visible Images
Opinion Aware Image Quality Analyzer
Subjective Human Study
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Analyzer

Image Dataset NSS Coefficients

Gaussian Fit | Features

(GGD & AGGD)
Support Vector
Machine
Human Opinion Scores Processing of
Evaluations Scores DMOS
Distorted Image NSS Coefficients
Gaussian Fit | Features Quality
(GGD & AGGD) SVMModel > Eimate

Todd Goodall, Alan C. Bovik, and Nicholas G. Paulter Jr Goodall

et al. (2015)
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Opinion Aware Image Quality
Analyzer

DMOS

80

Scatter plot of Qsy prediction scores versus the DMOS and the best
fitting logistic function.

12 /28



Opinion Aware Image Quality

TEXAS

The University of Texas at Austin

Analyzer
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Subjective Human Study

e 27 subjects, five
testing sessions, 750
fused LWIR-visible
images

e Absolute category
rating with hidden
reference

Screen resolution: 1024 x 768

Please provide a rating of quality of the image and then press the Enter key

e Single stimulus

Bad Poor Fair Good Excellent

14 /28



Subjective Human Study

Diff-Scores I Z-Scores I Rejection l DMOS I
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Subjective Human Study o
Diff-Scores I Z-Scores l Rejection I DMOS l
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(a) Scores before subject rejection (b) Scores after subject rejection
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Conclusion

e Natural scene statistics demonstrated being potent descriptors for
the quality estimation of fused LWIR-visible light images

e NSS features play an important role when analyzing distortions in
fused LWIR-visible light images

e Opinion-aware quality analyzer outperforms state-of-the-art fusion
quality models when correlating to human evaluations
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e Use a broader range of distortion in images for the subjective study

e Future studies might be able to use the proposed models to
evaluate other distortions in fused LWIR-visible images, such as the
"halo effect” in LWIR images, and image or video compression

e Surveillance videos could be well modeled and studied with the aid
of natural scene statistics to improve tracking algorithms
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Natural Scene Statistics

Highly successful IQA models have been based on the early work by
Ruderman on 'natural images' Mittal et al. (2013); Ruderman (1994).

I(ivj) — M(ivj)

1. j) = o(i,j)+C )
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Figure 1: NSS Histograms
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Distortion Models

(a) (b)
Figure 2: (a) Magnitude of the FFT of a frame. (b) Magnitude of synthetic
NU. Images taken from Pezoa and Medina (2011).

T(u, v)| =B, exp (_(”2%2“0)3 + B, exp (_("2%2”’)3 (2)

u v

ZI(u,v) ~U[—m, 7] 3)
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Paired Product Coefficients
e Multiplication of neighboring MSCN
e Directional behavior

e High sensitivity to blur

Log-Derivative Coefficients
e Sensitivity to high frequency noise
e High sensitivity to JPEG

’

Steerable Pyramid Coefficients

e Area V1 of visual cortex

e Band-pass characteristics
e High sensitivity to NU in 0° and 90°
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