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Goal for this presentation

Share how we developed a first-order method for non-negative
matrix factorization (NMF) with the Kullback-Leibler (KL) loss.
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Agenda

1. Context of the problem.

2. Formulation of the proposed method.

3. Experimental results on synthetic and real-world data.
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MOTIVATION
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What is non-negative matrix factorization?

(Lee & Seung, Nature 1999)

Given a matrix V, find W and H such that

V ≈ WH,

where V ∈ Rn×m
+ , W ∈ Rn×r

+ , H ∈ Rr×m
+ , with r ≤ min(n,m).
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Multiplicative updates algorithms

Is it possible to address these shortcomings?
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Multiplicative updates algorithms

Advantages: stability, ease of implementation, and linear
complexity per iteration.

Disadvantages: slow convergence, asymptotic convergence to
zeros, and poor local optima.

(Sun & Févotte, ICASSP 2014)

Is it possible to address these shortcomings?
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Gradient-based methods have better behavior
... but only apply to smooth losses

To find W and H with loss d(x|y) we solve

minimize
W,H ≥ 0

D(V|WH) =
∑

ij
d
(
Vij|(WH)ij

)
.

Euclidean (smooth): dEUC(x|y) = 1
2(y− x)2

Kullback-Leibler (non-smooth): dKL(x|y) = x log(x/y) + (y− x)
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∑

ij
d
(
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Euclidean (smooth): dEUC(x|y) = 1
2(y− x)2

Kullback-Leibler (non-smooth): dKL(x|y) = x log(x/y) + (y− x)

Lin (2007) and Kim et al. (2008), between others.

The goal is to provide a similar
first-order method for the KL loss.
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PROPOSED METHOD
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The saddle-point problem offers flexibility
... it does not require a smooth loss

min
x∈X

max
y∈Y
⟨Kx, y⟩+ G(x)− F∗(y)

min
x∈X

F(Kx) + G(x)︸ ︷︷ ︸
PRIMAL

max
y∈Y

−F∗(y)− G∗(−K⊤y)︸ ︷︷ ︸
DUAL

▶ X and Y are two real vector spaces, with dim(X ) = p and dim(Y) = q.
▶ G : X → R ∪ [+∞] and F∗ : Y → R ∪ [+∞] are proper, convex, and

lower-semicontinuous functions. F∗ is the convex conjugate of F.
▶ K : X → Y is a continuous linear operator with induced norm

∥K∥ = max{∥Kx∥ : x ∈ X with ∥x∥ ≤ 1}.

(Modified from: Chambolle & Pock, J Math Imaging Vis 2011) 8 / 17



Non-negative decomposition (convex)

minimize
W,H ≥ 0

DKL(V|WH)

..minimize
H ≥ 0

DKL(V|WH). minimize
W ≥ 0

DKL(V⊤|H⊤W⊤)

a ∈ Rp
+ is the given data

K ∈ Rp×q
+ is the fixed factor

x ∈ Rq
+ is to be estimated

minimize
x ⪰ 0

DKL(a|Kx)
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Primal and dual formulation

The non-negative decomposition problem with the KL loss

minimize
x⪰0

a⊤ log (a⊘ (Kx)) + 1⊤ (Kx− a)

is equivalent to the primal problem minx∈X F(Kx) + G(x) with
F(y) = a⊤ log (a⊘ y)− 1⊤a and G(x) = 1x⪰0 + 1⊤Kx.

Then, the dual problem maxy∈Y −F∗(y)− G∗(−K⊤y) with
F∗(y) = −a⊤ log (−y) and G∗(x) = 1x⪯K⊤1 is

maximize
K⊤(−y) ⪯ K⊤1

a⊤ log (−y) .

Note: ⊘ represents the entry-wise division operator.
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First-order primal-dual algorithm

Select K ∈ Rp×q
+ , x ∈ Rq

+, and σ, τ > 0;

Set x = x = xold = x0, and y = y0;

while stopping criteria not reached do

y← proxσF∗(y + σKx);

x← proxτG(x− τK⊤y);

x← 2x− xold;

xold ← x;

end

return x⋆ = x and y⋆ = y

(Modified from: Chambolle & Pock, J Math Imaging Vis 2011) 11 / 17
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proxσF∗(y) = 1
2
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y−√y ◦ y + 4σa

)
proxτG(x) =

(
x− τK⊤1

)
+

The proximal operator is defined as
proxτF(x) = arg miny

{
∥x−y∥2

2τ + F(y)
}
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proxσF∗(y) = 1
2

(
y−√y ◦ y + 4σa

)
proxτG(x) =

(
x− τK⊤1

)
+

We need to set the step-sizes !
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Automatic heuristic selection of step-sizes

Based on the convergence proofs, we know that
1. the step-sizes have to satisfy τσ∥K∥2 ≤ 1, and
2. the convergence rate is controlled by the quantity C.

We formulate an optimization problem to estimate σ and τ

minimize
σ,τ

C =
∥y0 − y⋆∥2

2σ
+
∥x0 − x⋆∥2

2τ

subject to τσ∥K∥2 ≤ 1.

Using heuristic replacements, (x⋆, y⋆) = (α1, β1), we obtain

σ =

√p 1⊤K 1
√q ∥K∥1⊤a and τ =

√q 1⊤a
√p ∥K∥1⊤K 1

.
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RESULTS
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Experiments on synthetic data

10
0

10
1

10
2

10
3

10
−10

10
−5

10
0

10
5

10
10

Number of iterations

D
is

ta
nc

e 
to

 o
pt

im
um

 

 

MUA
ADMM (ρ = 3)
FPA primal
FPA dual

Non-negative decomposition
(n,m, r) = (200, 500, 10)
Estimate H given W⋆

10
−1

10
0

10
1

10
2

10
3

10
−2

10
0

10
2

10
4

10
6

Run time (s)

O
bj

ec
tiv

e 
fu

nc
tio

n

 

 

MUA
ADMM (ρ = 5)
FPA (D = 5)

Non-negative matrix factorization
(n,m, r) = (200, 500, 10)

14 / 17



Non-negative matrix factorization on real-world data
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Future work: extension to topic models

▶ The formulations of probabilistic latent semantic analysis or
latent Dirichlet allocation relate to ours.

▶ If we include the constraint 1⊤x = 1 to G:

G(x) = 1{1⊤x=1; x⪰0} + 1⊤Kx,

we can use our method to find the latent topics.

▶ Note that in this case proxτG(x) does not have a closed
solution, but can be efficiently solved with dedicated
methods for orthogonal projections on the simplex.
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Summary

▶ We proposed a first-order primal-dual algorithm for non-negative
decomposition problems with the Kullback-Leibler loss.

▶ By using alternating optimization, our algorithm readily extends to
non-negative matrix factorization.

▶ All required computations may be obtained in closed form.
We provided an efficient heuristic way to select step-sizes.

▶ On synthetic or real-world data, our method is either faster than
existing algorithms, or leads to improved local optima, or both.
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