

Felipe Yanez
 INSEAD

Joint work with Francis Bach, done while at INRIA/École normale supérieure

42nd IEEE International Conference on Acoustics, Speech and Signal Processing March 7, 2017, New Orleans, LA, USA

Goal for this presentation

Share how we developed a first-order method for non-negative matrix factorization (NMF) with the Kullback-Leibler (KL) loss.

Agenda

1. Context of the problem.
2. Formulation of the proposed method.
3. Experimental results on synthetic and real-world data.

MOTVATION

What is non-negative matrix factorization?

(Lee \& Seung, Nature 1999)

Given a matrix V, find \mathbf{W} and \mathbf{H} such that

$$
\mathbf{V} \approx \mathbf{W H},
$$

where $\mathbf{V} \in \mathbb{R}_{+}^{n \times m}, \mathbf{W} \in \mathbb{R}_{+}^{n \times r}, \mathbf{H} \in \mathbb{R}_{+}^{r \times m}$, with $r \leq \min (n, m)$.

Multiplicative updates algorithms

Algorithms for Non-negative Matrix Factorization

Daniel D. Lee*

*Bell Laboratories
Lucent Technologies
Murray Hill, NJ 07974

H. Sebastian Seung* ${ }^{*}$
${ }^{\dagger}$ Dept. of Brain and Cog. Sci.
Massachusetts Institute of Technology
Cambridge, MA 02138

Multiplicative updates algorithms

Advantages: stability, ease of implementation, and linear complexity per iteration.

Disadvantages: slow convergence, asymptotic convergence to zeros, and poor local optima.

Multiplicative updates algorithms

Advantages: stability, ease of implementation, and linear complexity per iteration.

Disadvantages: slow convergence, asymptotic convergence to zeros, and poor local optima.

Is it possible to address these shortcomings?

Gradient-based methods have better behavior

... but only apply to smooth losses

To find \mathbf{W} and \mathbf{H} with loss $d(x \mid y)$ we solve

$$
\underset{\mathbf{W}, \mathbf{H} \geq 0}{\operatorname{minimize}} \quad D(\mathbf{V} \mid \mathbf{W H})=\sum_{i j} d\left(\mathbf{V}_{i j} \mid(\mathbf{W} \mathbf{H})_{i j}\right) .
$$

Euclidean (smooth):

$$
d_{E U C}(x \mid y)=\frac{1}{2}(y-x)^{2}
$$

Kullback-Leibler (non-smooth): $\quad d_{K L}(x \mid y)=x \log (x / y)+(y-x)$

Gradient-based methods have better behavior

... but only apply to smooth losses

To find \mathbf{W} and \mathbf{H} with loss $d(x \mid y)$ we solve

$$
\underset{\mathbf{W}, \mathbf{H} \geq 0}{\operatorname{minimize}} \quad D(\mathbf{V} \mid \mathbf{W H})=\sum_{i j} d\left(\mathbf{V}_{i j} \mid(\mathbf{W} \mathbf{H})_{i j}\right) .
$$

Euclidean (smooth):

$$
d_{E U C}(x \mid y)=\frac{1}{2}(y-x)^{2}
$$

Lin (2007) and Kim et al. (2008), between others.

Kullback-Leibler (non-smooth): $\quad d_{K L}(x \mid y)=x \log (x / y)+(y-x)$

Gradient-based methods have better behavior

... but only apply to smooth losses

To find \mathbf{W} and \mathbf{H} with loss $d(x \mid y)$ we solve

$$
\underset{\mathbf{W}, \mathbf{H} \geq 0}{\operatorname{minimize}} \quad D(\mathbf{V} \mid \mathbf{W H})=\sum_{i j} d\left(\mathbf{V}_{i j} \mid(\mathbf{W} \mathbf{H})_{i j}\right) .
$$

Euclidean (smooth):

$$
d_{E U C}(x \mid y)=\frac{1}{2}(y-x)^{2}
$$

Lin (2007) and Kim et al. (2008), between others.

Kullback-Leibler (non-smooth): $\quad d_{K L}(x \mid y)=x \log (x / y)+(y-x)$
The goal is to provide a similar first-order method for the KL loss.

The saddle-point problem offers flexibility

... it does not require a smooth loss

$$
\min _{x \in \mathcal{X}} \max _{y \in \mathcal{Y}}\langle K x, y\rangle+G(x)-F^{*}(y)
$$

- \mathcal{X} and \mathcal{Y} are two real vector spaces, with $\operatorname{dim}(\mathcal{X})=p$ and $\operatorname{dim}(\mathcal{Y})=q$.
- $G: \mathcal{X} \rightarrow \mathbb{R} \cup[+\infty]$ and $F^{*}: \mathcal{Y} \rightarrow \mathbb{R} \cup[+\infty]$ are proper, convex, and lower-semicontinuous functions. F^{*} is the convex conjugate of F.
- $K: \mathcal{X} \rightarrow \mathcal{Y}$ is a continuous linear operator with induced norm $\|K\|=\max \{\|K x\|: x \in \mathcal{X}$ with $\|x\| \leq 1\}$.

Non-negative decomposition (convex)

$a \in \mathbb{R}_{+}^{p} \quad$ is the given data
$K \in \mathbb{R}_{+}^{p \times a}$ is the fixed factor
$\underset{x \geq 0}{\operatorname{minimize}} D_{K L}(a \mid K x)$
$x \succeq 0$
$x \in \mathbb{R}_{+}^{q} \quad$ is to be estimated

Primal and dual formulation

The non-negative decomposition problem with the KL loss

$$
\underset{x \succeq 0}{\operatorname{minimize}} a^{\top} \log (a \oslash(K x))+1^{\top}(K x-a)
$$

is equivalent to the primal problem $\min _{x \in \mathcal{X}} F(K x)+G(x)$ with $F(y)=a^{\top} \log (a \oslash y)-1^{\top} a$ and $G(x)=\mathbb{1}_{x \succeq 0}+1^{\top} K x$.

Then, the dual problem $\max _{y \in \mathcal{Y}}-F^{*}(y)-G^{*}\left(-K^{\top} y\right)$ with $F^{*}(y)=-a^{\top} \log (-y)$ and $G^{*}(x)=\mathbb{1}_{x \preceq K^{\top} 1}$ is

$$
\underset{K^{\top}(-y) \preceq K^{\top} 1}{\operatorname{maximize}} a^{\top} \log (-y) .
$$

Note: \oslash represents the entry-wise division operator.

First-order primal-dual algorithm

Select $K \in \mathbb{R}_{+}^{p \times q}, x \in \mathbb{R}_{+}^{q}$, and $\sigma, \tau>0$;
Set $x=\bar{x}=x_{\text {old }}=x_{0}$, and $y=y_{0}$;
while stopping criteria not reached do

$$
y \leftarrow \operatorname{prox}_{\sigma F^{*}}(y+\sigma K \bar{x}) ;
$$

$$
x \leftarrow \operatorname{prox}_{\tau G}\left(x-\tau K^{\top} y\right)
$$

$$
\bar{x} \leftarrow 2 x-x_{\text {old }} ;
$$

$$
x_{\text {old }} \leftarrow x
$$

end
return $x^{\star}=x$ and $y^{\star}=y$

First-order primal-dual algorithm

Select $K \in \mathbb{R}_{+}^{p \times q}, x \in \mathbb{R}_{+}^{q}$, and $\sigma, \tau>0$;
Set $x=\bar{x}=x_{\text {old }}=x_{0}$, and $y=y_{0}$;
while stopping criteria not reached do

$$
\begin{array}{ll}
y & \leftarrow \operatorname{prox}_{\sigma F^{*}}(y+\sigma K \bar{x}) ; \\
x & \operatorname{prox}_{\sigma F^{*}}(y)=\frac{1}{2}(y-\sqrt{y \circ y+4 \sigma a}) \\
\bar{x} \leftarrow \operatorname{prox}_{\tau G}\left(x-\tau K^{\top} y\right) ; & \operatorname{prox}_{\tau G}(x)=\left(x-\tau K^{\top} 1\right)_{+} \\
& \leftarrow 2 x-x_{\text {old }} ;
\end{array}
$$

$$
x_{\text {old }} \leftarrow x
$$

The proximal operator is defined as
end $\operatorname{prox}_{\tau F}(x)=\arg \min _{y}\left\{\frac{\|x-y\|^{2}}{2 \tau}+F(y)\right\}$
return $x^{\star}=x$ and $y^{\star}=y$

First-order primal-dual algorithm

Select $K \in \mathbb{R}_{+}^{p \times q}, x \in \mathbb{R}_{+}^{q}$, and $\sigma, \tau>0$;
Set $x=\bar{x}=x_{\text {old }}=x_{0}$, and $y=y_{0}$;
while stopping criteria not reached do

$$
\begin{aligned}
& y \leftarrow \operatorname{prox}_{\sigma F^{*}}(y+\sigma K \bar{x}) ; \\
& x \leftarrow \operatorname{prox}_{\tau G}\left(x-\tau K^{\top} y\right) ;
\end{aligned} \quad \operatorname{prox}_{\sigma F^{*}}(y)=\frac{1}{2}(y-\sqrt{y \circ y+4 \sigma a})
$$

return $x^{\star}=x$ and $y^{\star}=y$

Automatic heuristic selection of step-sizes

Based on the convergence proofs, we know that

1. the step-sizes have to satisfy $\tau \sigma\|K\|^{2} \leq 1$, and
2. the convergence rate is controlled by the quantity C.

Automatic heuristic selection of step-sizes

Based on the convergence proofs, we know that

1. the step-sizes have to satisfy $\tau \sigma\|K\|^{2} \leq 1$, and
2. the convergence rate is controlled by the quantity C.

We formulate an optimization problem to estimate σ and τ

$$
\begin{array}{ll}
\underset{\sigma, \tau}{\operatorname{minimize}} & C=\frac{\left\|y_{0}-y^{\star}\right\|^{2}}{2 \sigma}+\frac{\left\|x_{0}-x^{\star}\right\|^{2}}{2 \tau} \\
\text { subject to } & \tau \sigma\|K\|^{2} \leq 1
\end{array}
$$

Automatic heuristic selection of step-sizes

Based on the convergence proofs, we know that

1. the step-sizes have to satisfy $\tau \sigma\|K\|^{2} \leq 1$, and
2. the convergence rate is controlled by the quantity C.

We formulate an optimization problem to estimate σ and τ

$$
\begin{array}{ll}
\underset{\sigma, \tau}{\operatorname{minimize}} & C=\frac{\left\|y_{0}-y^{\star}\right\|^{2}}{2 \sigma}+\frac{\left\|x_{0}-x^{\star}\right\|^{2}}{2 \tau} \\
\text { subject to } & \tau \sigma\|K\|^{2} \leq 1
\end{array}
$$

Using heuristic replacements, $\left(x^{\star}, y^{\star}\right)=(\alpha 1, \beta 1)$, we obtain

$$
\sigma=\frac{\sqrt{p} 1^{\top} K 1}{\sqrt{q}\|K\| \mathbf{1}^{\top} a} \quad \text { and } \quad \tau=\frac{\sqrt{q} 1^{\top} a}{\sqrt{p}\|K\| \mathbf{1}^{\top} K 1} .
$$

RESULTS

Experiments on synthetic data

Non-negative matrix factorization $(n, m, r)=(200,500,10)$

Non-negative matrix factorization on real-world data

Spectrogram of a jazz song $(n, m, r)=(129,9312,20)$

MUA (153 min) ADMM (32 min) FPA (28 min)

Future work: extension to topic models

- The formulations of probabilistic latent semantic analysis or latent Dirichlet allocation relate to ours.
- If we include the constraint $1^{\top} x=1$ to G :

$$
G(x)=\mathbb{1}_{\left\{1^{\top} x=1 ; x \succeq 0\right\}}+1^{\top} K x,
$$

we can use our method to find the latent topics.

- Note that in this case $\operatorname{prox}_{\tau G}(x)$ does not have a closed solution, but can be efficiently solved with dedicated methods for orthogonal projections on the simplex.

Summary

- We proposed a first-order primal-dual algorithm for non-negative decomposition problems with the Kulllback-Leibler loss.
- By using alternating optimization, our algorithm readily extends to non-negative matrix factorization.
- All required computations may be obtained in closed form. We provided an efficient heuristic way to select step-sizes.
- On synthetic or real-world data, our method is either faster than existing algorithms, or leads to improved local optima, or both.

