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Goal for this presentation

Share how we developed a first-order method for non-negative
matrix factorization (NMF) with the Kullback-Leibler (KL) loss.
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Agenda

1. Context of the problem.

2. Formulation of the proposed method.

3. Experimental results on synthetic and real-world data.
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MO TIVATION
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What is non-negative matrix factorization?
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(Lee & Seung, Nature 1999)

Given a matrix V, find W and H such that
V~WH,
where Ve R, W e R, H € R, with r < min(n,m).
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Multiplicative updates algorithms
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Multiplicative updates algorithms

Advantages: stability, ease of implementation, and linear
complexity per iteration.

Disadvantages: slow convergence, asymptotic convergence to
zeros, and poor local optima.

(Sun & Févotte, ICASSP 2014) 5/17



Multiplicative updates algorithms

Advantages: stability, ease of implementation, and linear
complexity per iteration.

Disadvantages: slow convergence, asymptotic convergence to
zeros, and poor local optima.

Is it possible to address these shortcomings?

(Sun & Févotte, ICASSP 2014) 5/17



Gradient-based methods have better behavior

... but only apply to smooth losses

To find W and H with loss d(x|y) we solve

rwr};rr;lzoe D(V|WH) = ; d (Vj|(WH);) .

Euclidean (smooth): deuc(xly) = (v — x)?

Kullback-Leibler (non-smooth):  di; (x]y) = xlog(x/y) + (v — x)
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Gradient-based methods have better behavior

... but only apply to smooth losses

To find W and H with loss d(x|y) we solve

rr&r};n;lzoe D(V|WH) = ;d(v,](WH),j).
Euclidean (smooth): deuc(xly) = (v — x)?

Lin (2007) and Kim et al. (2008), between others.

Kullback-Leibler (non-smooth):  dik; (x]y) = xlog(x/y) + (v — x)

The goal is to provide a similar
first-order method for the KL loss.
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PROPOSED METHOD
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The saddle-point problem offers flexibility

... it does not require a smooth loss

minmax (Kx, y) + G(x) — F*(y)

xeX yey
min F(Kx) + G(x) max —F*(y) — G*(—Ky)
XEX yey
PRIMAL DUAL

> X and Y are two real vector spaces, with dm(X) = p and dim(Y) = g.

» G: X - RU[+o0]and F* : Y — R U [4o0] are proper, convex, and
lower-semicontinuous functions. F* is the convex conjugate of F.

> K:X — Yisacontinuous linear operator with induced norm
K| = max{||Kx]|| : x € X with ||x|| < 1}.

(Modified from: Chambolle & Pock, J Math Imaging Vis 2011) 8/17



Non-negative decomposition (convex)

minimize Dy, (VIWH
ninimizs kL (VIWH)

minimize Dx; (VIWH minimize Dy (VI [HTW "
i kL (VIWH) inimize k (V' H W)

aeR} isthe given data o
K € RS9 s the fixed factor m')’?'m)'ze D (alKx)

xeR]  isto be estimated
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Primal and dual formulation
The non-negative decomposition problem with the KL loss
minimize a'log(a® (Kx))+1" (Kx —a)
Xz

is equivalent to the primal problem minyex F(Kx) + G(x) with
Fiy)=aTlog(@®y)—1"a and G(X) = Lo + 17Kx.

Then, the dual problem max,cy —F*(y) — G*(—K"y) with
F(y) = —a'log(—y) and G*(x) = 1,xxrq is

o T
maximize a' log(—Vy).
eximize, g(-y)

Note: @ represents the entry-wise division operator. 10/17



First-order primal-dual algorithm

Select K e RS9, x e R?, and o, 7 > 0;
Set X =X = Xy = Xo, and y = yp;
while stopping criteria not reached do
Y = prox g (Y + oKX);

X + prox_g(x — TKTy);

X 4 2X — Xo/ds

Xold <= X;

end
return x* =xandy* =y

(Modified from: Chambolle & Pock, J Math Imaging Vis 2011) 11/17
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Select K e RS9, x e R?, and o, 7 > 0;

Set X =X = Xy = Xo, and y = yp;

while stopping criteria not reached do

Y prox e (y + 0KX);  proxe(v) = 5 (v — vy oy + 4oa)
X + prox_g(x — TKTy); prox g(X) = (x — K1) |

X 4 2X — Xo/ds
The proximal operator is defined as

Xold <= X, 2
prox_g(x) = argmin, {% + F(Y)}

end
return x* =xandy* =y
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First-order primal-dual algorithm

Select K e RS9, x e R?, and o, 7 > 0;

Set X =X = Xy = Xo, and y = yp;

while stopping criteria not reached do

Y prox e (y + 0KX);  proxe(v) = 5 (v — vy oy + 4oa)
X + prox_g(x — TKTy); prox g(X) = (x — K1),

X 4 2X — Xo/ds

Xoid 4 X; We need to set the step-sizes !

end
return x* =xandy* =y

(Modified from: Chambolle & Pock, J Math Imaging Vis 2011) 11/17



Automatic heuristic selection of step-sizes

Based on the convergence proofs, we know that

1. the step-sizes have to satisfy 7¢||K]||?> < 1, and
2. the convergence rate is controlled by the quantity C.
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Automatic heuristic selection of step-sizes

Based on the convergence proofs, we know that

1. the step-sizes have to satisfy 7¢||K]||?> < 1, and
2. the convergence rate is controlled by the quantity C.

We formulate an optimization problem to estimate o and

* (|12 * (|2
N - Xo — X
minimize  C = o —y7| + Ixo |
o, 20 2T

subjectto o ||K||> < 1.

Using heuristic replacements, (x*,y*) = (a1, 1), we obtain

oo YPLKL Lo ata
Va [KjiTa VP [KITTK 1
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RESULTS
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Experiments on synthetic data
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Non-negative matrix factorization on real-world data
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Future work: extension to topic models

» The formulations of probabilistic latent semantic analysis or
latent Dirichlet allocation relate to ours.

» If we include the constraint 1Tx = 1 to G:
G(X) = LgTym1, xm0y T+ 1TKx,

we can use our method to find the latent topics.

» Note that in this case prox_s(x) does not have a closed
solution, but can be efficiently solved with dedicated
methods for orthogonal projections on the simplex.
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Summary

» We proposed a first-order primal-dual algorithm for non-negative
decomposition problems with the Kullback-Leibler loss.

» By using alternating optimization, our algorithm readily extends to
non-negative matrix factorization.

» All required computations may be obtained in closed form.
We provided an efficient heuristic way to select step-sizes.

» On synthetic or real-world data, our method is either faster than
existing algorithms, or leads to improved local optima, or both.
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