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Curse of dimensionality
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Our solution

We employ a high dimensional dictionary learning method to learn a global model of face
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Learning the Model

Up-Scaling Dictionary Learning

Problem Formulation

min
A,X

||Y −ΦAX||2F subject to ||xi||0 ≤ p, ||ai||0 ≤ k

Φ: Cropped Wavelets

The transform for signal f is defined in terms of a pursuit over a convolutional and multi-scale

dictionary, providing sparsest wavelet representations by optimally (implicitly) extending the

signal borders.
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Learning the Model

OSDL in practice

min
X,A

1

2
||Y −ΦAX||2F︸ ︷︷ ︸

f(X,A)

s.t.

{
||xi||0 ≤ p ∀i

||aj ||0 ≤ k ∀j
.

Data: Training samples {yi}, base-dictionary Φ, initial sparse matrix A0

for t = 1, . . . , T do

Draw a mini-batch Yt at random ;

Xt ← Sparse Code (Yt,Φ,At,Gt) ;

At+1
S = Pk

[
At

S − η
t∇f(At

S)
]

;

Update columns and rows of G by
(
At+1

)T
GΦAt+1

S ;

end

Result: Sparse Dictionary A

Incorporate a momentum variable

Analytical step-size

Replace repeated/unused atoms
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Learning the Model

Trainlets for Data Approximation

64×64 Images.

≈ 12K training examples.

Non-Redundant Dictionary (≈ 4K atoms).

Atoms Sparsity: 300.

Φ : Db4 cropped-wavelets (r = 1.37, 1D) .
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Training the Model

Several face-images dataset ≈ 19K images

Images size: 100× 100

No pre-processing (alignment, coherent scaling, etc)

Cropped Daubechies Wavelets (4 v.m.)

6, 000 atoms, each 1, 000 nnz (6% sparse!)
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Inpainting algorithm

Large Image Inpainting

Problem Formulation

min
x
‖x‖0 subject to ‖y −MDx‖2 ≤ ε.

Relaxed to:

min
x
‖y −MDx‖2 + λ‖x‖1,

Effect of regularization

λ →
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Conclusion

Concluding Remarks

We exploit the representation power of Trainlets to learn a global model

Very simple problem formulation

No extra algorithmic manipulation are needed

Plausible reconstructions – while different from the original images

Larger dataset would boost the model

Other type of inverse problems?

Questions?

Code and model available at jsulam.cswp.cs.technion.ac.il
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