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Overview M
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@ Total-variation (TV) regularization is useful in many inverse problems,
such as “Large-Scale Computational Imaging with Wave Models.”

@ TV regularized optimization problems are challenging due to:

e nonseparability of finite-difference operator,
e nonsmoothness of ¢1 norm.

@ Variable splitting methods + Proximal gradient methods
e Split Bregman, ADMM, ---
e “FISTA + Gradient Projection (GP)”
[Beck and Teboulle, IEEE TIP, 2009]

@ Goal: Provide faster convergence for “FISTA + GP”

e eventually: for large-scale inverse problems
o here: for TV-based image deblurring.



© Problem

e Existing Methods for Inner Dual Problem: GP, FGP

e Proposed Methods for Inner Dual Problem: FGP-OPG, OGP
@ Examples

© Summary
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@ Problem
@ Inverse Problems
@ FISTA for Inverse Problems
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Inverse Problems M

MICHIGAN

Consider the linear model:
b= Ax + ¢,

where b € RMY is observed data, A € RMNXMN s 3 system matrix,
z={Tmn} € RMN s a true image, and € € RMN s additive noise.

To estimate image x, solve the TV-regularized least-squares problem:
A . 1 2
T =argmin®(x), P(x):= §||Aaz = bl|5 + A|z||Tv,
x
where the (anistropic) Total Variation (TV) semi-norm uses finite differences:

M—-1N-1
HmHTV = Z Z |xm,n - xm+1,n‘ + |xm,n - xm,n+1|-

m=1 n=1



FISTA for Inverse Problems M
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FISTA [Beck and Teboulle, SIIMS, 2009]
Initialize xo = no, La = ||A||2, to =1, A\:= \/La.
Fori=1,2,...

1
b =mn;_1— L—AT (An;—1 — b) (gradient descent step)
A

1 _ _
x; = arg min H;(x), Hi(x) = 3 ||z — biHi + A2 |Fy
1 2
t; = 5 1+ 4/1+482 (momentum factors)
ti1—1
n; = x; + ; (z; — 1) (momentum update)
i

FISTA decreases the cost function with the optimal rate O(1/i?):

2L —x.|[3
Blai) - (a.) < Al @l

- where x, is an optimal solution.
= (Z+ 1)2 ) * p

However, it is difficult to exactly compute the inner problem for TV.



Inner Denoising Problem of FISTA M
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For solving inverse problems with FISTA, the inner minimization problem
is a “simpler” TV-regularized denoising problem:

FISTA's inner TV-regularized denoising problem

1 _ _
x; ~ argmin H;(z), H;(x):= . || — bZHZ + Allx||Tv.
x |

no Al

Still, no easy solution because
@ nonseparability of finite differences,

@ absolute value function in TV semi-norm is nonsmooth.

Beck and Teboulle [IEEE TIP, 2009] approach:

@ write dual of FISTA's inner denoising problem
(based on Chambolle [JMIV, 2004])

@ apply iterative Gradient Projection (GP) method

o for a finite number of iterations.



e Existing Methods for Inner Dual Problem: GP, FGP
@ Variable Splitting + Duality for Inner Denoising
@ Gradient Projection (GP) and Fast GP (FGP) for Dual Problem
@ Convergence Analysis of the Inner Primal Sequence



Variable Splitting + Duality for Inner Denoising Proble M
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Rewrite the inner denoising problem of FISTA in composite form:
argmin {H(w) := f(«) + 5(Dw)}
f(@) = 5llAz -l g(z) =izl
where g(Dx) = A||Dz||1 = A||z||Tv.
Using variable splitting, an equivalent constrained problem is:

arg;ninmzin {H(z,z):= f(z) + g(2) : Dz =2z}.

Note that H(x) = H(x, Dx), and g(z) is separable unlike g(Dx).



Variable splitting + Duality for Inner Denoising (cont’m

To efficiently solve this constrained problem, consider the Lagrangian dual:
q(y) = inf L(@, 2,y) = —f*(D "y) — g"(-v),

L(x,z,y) = f(x)+9(z) — (y, Dx — z) (Lagrangian)
max{(u, z) —f(x)} (convex conjugates)

For simplicity, define the following convex functions:
. 1 - 1,5 )
Fly) = f*(DTy) = 51Dy + Bl3 — bl (quadratic)

0, yely={y: |ylle <AL

. (separable)
oo, otherwise,

for an equivalent composite convex function:

q(y) = —q(y) = F(y) + G(y).
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Gradient Projection (GP) for Dual Problem M
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Dual of inner problem equivalent to solving a constrained quadratic problem:

. . 1 U
min F(y), F(y):=f*(D"y)=z|[D"y+b|j3— 5[blf5-
yeYV5 2 2

Quadratic function F(y) has Lipschitz continuous gradient with a constant
L:=||D||3, ie, for any y,w ||[VF(y) — VF(w)||2 < L||ly — w||2.

Separability of ¢, ball Y5 = GP algorithm natural.

GP for Dual Problem [Chambole, EMMCVPR, 2005]

Initialize yo, L = || D|[3.
Fork—=1,2,...1

VF(yr-1) = D(D"yj_1 +b)
1
Yr = P(Yr—1) := Py, <yk1 - ZVF(yk1)>

where Py (y) := [min{|yi|, A} sgn{y}] projects y onto (o ball Y.



Fast Gradient Projection (FGP) for Dual Problem M
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GP convergence rate is O(1/k). To accelerate, use FGP (for dual problem).

FGP for Dual Problem [Beck and Teboulle, IEEE TIP, 2009]

Initialize Yo = wo, tog = 1.
For kK > 1,

Yr = p(wr—_1)

1
=3 (1+/1+44,)

tp—1— 1
wy = Y + ;—k(yk — Yk—1)

FGP decreases the dual function with the optimal rate O(1/k?), i.e.,

2L|lyo — .13

q(yr) — q(ys) < 1)

for an optimal dual solution y,.



Convergence Analysis of the Inner Primal Sequence

More important is convergence rate of the inner primal sequence:
— pT b
z(y):=D y+b.

[Beck and Teboulle, ORL, 2014] showed the following bounds:

1 (yx) — 2|2 < @(@@—«M»WQ

q
H(@(yy) — H(®.) < vu (2 (@) — dly.) )
O(1/k) for FGP O(l/k2) for FGP

for vy := max max ||d\|2<oo
* deoH

FGP has optimal rate O(1/k?) for the inner dual function decrease.
= O(1/k) rate for the inner primal sequence.

Next: new algorithm that improves the convergence rate of the inner primal
function H(z(yx)) — H(x.) to O(1/k'5).

13
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Recap of FISTA for Inverse Problems M
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FISTA for solving inverse problems
@ Momentum to provide fast O(1/i2) rate for outer loop
@ Inner TV denoising problem (challenging)

o Consider dual of inner denoising problem
o Algorithms for inner dual problem:
@ GP (slow)
o FGP (faster due to momentum)
o Next: new momentum-type algorithms (FGP-OPG, OGP)
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© Proposed Methods for Inner Dual Problem: FGP-OPG, OGP
@ New Convergence Analysis of Inner Primal Sequence
@ FGP-OPG for Dual Problem
@ OGM and lts Projection Version for Dual Problem
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New Convergence Analysis of Inner Primal Sequence M
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New inner primal-dual gap bound (and the inner primal function bound):

H(z(p(y))) — H(z.) < H(z(p(y))) — a(p(y))
< 2L ([p(y)ll2 +79) [| P(y) — yll2
—_——

gradient projection norm

for 7, 1= max, maxgepg(z) ||d[|2 < 0o.  [Kim and Fessler, arXiv:1609.09441]
Recall projected gradient is p(y) = Py, (y — 1VF(y)).
@ The rate of decrease of the gradient projection norm || p(yx) — yi||2 of
both (!) GP and FGP is only O(1/k).
@ Recent new algorithm FPG-OPG decreases gradient projection norm with
rate O(1/k'?) and best known constant.
[Kim and Fessler, arXiv:1608.03861]
o —> FPG-OPG provider better rates above.
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FGP-OPG for Dual Problem M
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FGP-OPG for Dual Problem  [Kim and Fessler, arXiv:1608.03861]

Initialize yo = wq, to =Tp =1
Fork=1,...,N,

Yr = p(wr—1) (gradient projection update)
1+, /14462_ N
=4 k=L 5] -1
N_T"'“, otherwise
]{
Ty = Zti (new momentum factor)
i=0

(The—1 — tr—1)tx
tk:—lTk:

(ti,1 — Tk;—l)tkz
tr—1Tk

(new momentum update)

wi = Yi + (Y — Yr—1) + (Yr — wi—1)

This becomes FGP for usual t; choice where t2 = T}, for all k.



Gradient Projection Bound of FGP-OPG M
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FGP-OPG has the following bound for the “smallest” gradient projection norm:
[Kim and Fessler, arXiv:1608.03861]

: IIyo Ysl|2
min lIp(y) —yll2 <
ye{wo,...,wN_1,YN } \/Z T} — t + Thn_1
2fllyo — Y2
N1.5 !

Improves on O(1/N) bound of GP and FGP.

(Using ¢ = ®2 for any a > 2 also provides the rate O(1/k!®) without
selecting N in advance, unlike FGP-OPG.)
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Optimized Gradient Method (OGM) M
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For unconstrained problem, i.e. G(y) = 0, the following OGM decreases the
(dual) function faster than FGP (in the worst-case).

OGM [Kim and Fessler, Math. Prog., 2016]

Initialize yg = wy, 6y =1
Fork=1,...,N,

1
Y = Wi—1 — ZVF(wk—l)

1+4/1+4602
0, — f’”, k=1,...,N—1,
) 14+./1+862 _
— k=l k=N,
1 — 1 0
Wi = Y + ———— (Yr — Y1) +—— (yp — wi_1)

9;.; 9/«

For unconstrained problem, OGM satisfies better bound than FGM:

1L|lyo — y-|[3



Projection Version of OGM (OGP) M
Projection version of OGM (OGP) [Taylor et al., arXiv:1512.07516]

Initialize yo = wo = ug, to =1, (o =1
Fork=1,..., N,

1
Yk = Wk—1 — EVF(wk—l)

0,1 —1 05—
up = Y + kelik(yk — Yp—1) + %(’yk — wWwy_1)
Or_1—1 1
_ k=172 (Wp_1 — Up_1)
O Cp1
wy, = Py, (u)
Or_1—1  Oh_;
Ck:1+k]7+ k—1

Ok Ok

This OGP reduces to OGM when G(y) =0, i.e., Py (y) = y.
OGP is “numerically” found to satisfy the bound similar to OGM as

1L||yo — y.3

(i(wk) - (j(y*) é (]{ + 1)2



© Examples
@ TV-regularized Image Denoising

@ TV-regularized Image Deblurring
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Image Denoising: Experimental Setup
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Generated a noisy image b by adding noise ¢ ~ A/(0,0.1?) to a normalized
512 x 512 Lena image @t;ye-

True image (Ttruc) Noisy image (b)
Denoise b by solving the following for A = 0.1, using its dual:
N . 1
& =argmin H(x), H(x):= §||:c—b||§—|—)\||w||Tv.
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Image Denoising: Primal-Dual Gap vs. Iteration M
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3 —aGP
10 -e-FGP
-+ FGP-OPG
= -A-0GP
iwz
%
E 1
10
20 40 60 80 100
Tteration (k)
H(z(yr)) — a(yr) -
vs. lteration (k
Denoised image or H(z(wy)) — q(wy) *)
Known Rate GP FGP FGP-OPG OGP

Dual Function | O(1/k) | O(1/k?*) | O(1/k?) | O(1/k?)
Primal-Dual Gap | O(1/k) | O(1/k) | O(1/k'5) | O(1/k)
o FGP(-OPG) and OGP are clearly faster than GP.

o FGP-OPG is slower than FGP and OGP unlike our worst-case analysis.
@ OGP provides a speedup over FGP(-OPG).
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Image Deblurring: Experimental Setup M
Generated a noisy and blurred image b by using a blurring operator A of
19 x 19 Gaussian filter with standard deviation 4, and by adding noise
€ ~ N(0,0.0012) to a normalized 512 x 512 Lena image Ztye.

True image (Ttruc) Noisy and blurred image (b)
Deblur b by solving the following for A = 0.005:
1
& =argmin ®(x), O(x):= §||A$ —b|3 + A|z|[rv-
x
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Image Deblurring: Cost Function vs. Iteration M
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50 outer iterations (i) of FISTA with K = 10 inner iterations (k)

K=10
20 —FISTA w/ GP
198 ~G-FISTA w/ FGP
-+ FISTA w/ FGP-OPG
19.6 \ —A-FISTA w/ OGP
—19.4
R
< 19.2
19
18.8
18.6
0 10 20 30 40 50
Tteration (i)
Deblurred image ®(x;) vs. lteration (4)

o FISTA converges faster with accelerated inner methods than with GP.

@ FISTA with FGP-OPG is slower here than with FGP or OGP, unlike our
worst-case analysis.

o FISTA with OGP is faster than with FGP(-OPG).

°
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Image Deblurring: Cost Function vs. Iteration M
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50 outer iterations (i) of FISTA with K = 8 inner iterations (k)

K=8
20 A —FISTAW/ GP
198 : -O-FISTA w/ FGP
-+ FISTA w/ FGP-OPG
19.6 \:. —A-FISTA w/ OGP
—19.4
ke
192
19
18.8
18.6
0 10 20 30 40 50
Tteration (i)
Deblurred image ®(x;) vs. lteration (4)

o FISTA converges faster with accelerated inner methods than with GP.

@ FISTA with FGP-OPG is slower here than with FGP or OGP, unlike our
worst-case analysis.

o FISTA with OGP is faster than with FGP(-OPG).

°
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Image Deblurring: Cost Function vs. Iteration M
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50 outer iterations (i) of FISTA with K = 5 inner iterations (k)

K =

5

19 r|—FISTAw/ GP — A

-e-FISTA w/ FGP
18.8 |-+~ FISTA w/ FGP-OPG
-A-FISTA w/ OGP

0 10 20 30 40 50
Tteration (i)

Deblurred image ®(x;) vs. lteration (4)

o FISTA converges faster with accelerated inner methods than with GP.

@ FISTA with FGP-OPG is slower here than with FGP or OGP, unlike our
worst-case analysis.

o FISTA with OGP is faster than with FGP(-OPG).

@ FISTA unstable with too few inner iterations
25 /28



© Problem

e Existing Methods for Inner Dual Problem: GP, FGP

e Proposed Methods for Inner Dual Problem: FGP-OPG, OGP
@ Examples

© Summary
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Summary and Future Work M
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@ We accelerated (in worst-case bound sense) solving the inner denoising
problem of FISTA for inverse problems.

@ For that inner denoising problem, standard FGP decreases the (inner)
primal function with rate O(1/k).

@ Proposed FGP-OPG guarantees a faster rate O(1/k!-5) for the (inner)
primal-dual gap decrease.

@ However, FGP-OPG was slower than FGP in the experiment.

@ OGP provided acceleration over FGP(-OPG) in the experiment, possibly
due to its fast decrease of the (inner) dual function.

o Future work
o Develop faster gradient projection methods that decrease the function or
the gradient projection.
o Determine if O(1/k"?) is optimal rate for decreasing the gradient
projection norm.
e For TV, compare to parallel proximal algorithm of U. Kamilov. [10]
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