GDspike: An Accurate Spike Estimation Algorithm from Noisy Calcium Fluorescence Signals

3 Post-processing: Triangulation at zero crossing positions to get the spike train

Jilt Sebastian¹, Mari Ganesh Kumar¹, Y. S. Sreekar¹, Rajeev Vijay Rikhye², Mriganka Sur², Hema A. Murthy¹

¹Indian Institute of Technology Madras, India ²Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology Cambridge, USA

Figure 2 : Signal units comprising of onset, attack, and decay

Important feature of GDspike

GDspike is a fast and non-model-based signal processing algorithm. Group delay representation acts as a denoising and peak-selective filter.

Dataset

Consists of Ca²⁺ fluorescence signals and electrode action potentials which are simultaneously recorded from the mouse visual cortex neurons*.

Table 1 : Dataset used for evaluation

Set	#cells	Indicator	Samp. Rate (Hz)	# Spikes
1	9	GCaMP5k	50	2735
2	11	GCaMP6f	60	4536
3	9	GCaMP6s	60	2123
4	11	jRGECO1a	25	9080
5	10	jRCaMP1a	15	3624

Performance metrics

- F-measure: Temporal bin size = 0.5sec
- Area Under the ROC (AUC): Area enclosed by the TPR against the FPR
- Correlation: Calculated between every sample of spike train and the ground truth

[*] Open source dataset provided by Svoboda lab, at Janelia Research Campus. http://crcns.org

Correlat (q)

(https://ccbr.iitmadras.in/)