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Problem of Study
Dictionary Learning

minimize
D∈D,X,(Xi)

I
i=1

I∑
i=1

1

2
‖Yi −DXi‖2F︸ ︷︷ ︸

,fi(D,Xi)

+ λ‖Xi‖1 +
µ

2
‖Xi‖2F︸ ︷︷ ︸

,gi(Xi)

where µ, λ > 0 and D is a compact convex set

Applications: estimation, image denoising/debluring/inpainting, superresolution,

dimensionality reduction, bi-clustering, feature-extraction, classification,

prediction, ...
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Goal: designing a distributed algorithm over a network
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Problem of Study
Distributed Dictionary Learning

minimize
D∈D,X,(Xi)
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Problem of Study
Network Model

Dynamic network topology: Agents are embedded in a possibly time-varying

directed communication graph G[ν]
I The vertices of G[ν] correspond to the agents

I The set of directed edges may change over the
time

I Ni[ν]: set of agents that can send information to
agent i at time ν including node i

Assumptions on the network & agents’ knowledge

T -strongly connected digraphs: ∃T ∈ N+ such that the graph(
[I],

⋃
t=0,...,T−1 G[t+ ν]

)
is connected for all ν ≥ 0.

Local information: each agent i knows its fi and gi but not
∑
j 6=i fj

Local communications: agents can only receive information from their “neighbors”
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Literature Review and Challenges
Distributed Dictionary Learning

Ad-hoc schemes for distributed DL problem:[Lia-Zha-Zen’14], [Che-Zai-Say’15],

[Wai-Cha-Sca’15], [Cha-Ric’13], [Kop-Gar-War-Stum-Rib’15,’16]

I Time invariant undirected graphs

I No proof of convergence to stationary solutions of DL problem

Distributed Nonconvex Multiagent Optimization: [DiLor-Scu’15]

I Can not handle both Xi’s (private variables) and D (shared variables)

I Some technical conditions are not satisfied; e.g., ∇fi is NOT bounded or Lipschitz

continuous over the feasible set

Our contribution: extending [Dan-Scu-Fac, Asilomar’16] to deal with

time-varying digraphs

Full picture: A. Daneshmand, Y. Sun, G. Scutari, F. Facchinei, B. M.

Sadler, “Decentralized Dictionary learning over Dynamic Digraphs”, J.

Mach. Learn. Res. (under review). Available online.
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Algorithmic Design
Main Idea

min
D∈D
{Xi}i

U(D,X) ,
I∑
i=1

{
1

2
‖Yi −DXi‖

2
F︸ ︷︷ ︸

fi(D,Xi)

+gi(Xi)

}
, U(D,X) = fi(D,Xi) +

∑
j 6=i

fj(D,Xj) +
I∑
i=1

gi(Xi)

Each agent i: maintains a local copy D(i) of D, and controls Xi :

1 [local optimization]: optimizes D(i) and Xi alternatingly by solving strongly convex

problems

2 [consensus update]: exchanges the local copies D(i) to force consensus
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Algorithmic Design
Step 1: Local Optimization

min
D∈D
{Xi}i

U(D,X) ,
I∑
i=1

{
1

2
‖Yi −DXi‖

2
F︸ ︷︷ ︸

fi(D,Xi)

+gi(Xi)

}
, U(D,X) = fi(D,Xi) +

∑
j 6=i

fj(D,Xj) +
I∑
i=1

gi(Xi)

[optimization of D(i)]: Given (Dν
(i)
,Xν

i ), each agent i updates D(i) setting Xi = Xν
i and

solving

D̃
ν
(i), argmin

D(i)∈D

{
fi

(
D(i),X

ν
i

)
+
τνD,i

2
‖D(i) −D

ν
(i)‖

2
F +

〈
Π̃
ν
i ,D(i) −D

ν
(i)

〉}

U
ν
(i) = D

ν
(i) + γ

ν
(D̃
ν
(i) −D

ν
(i))

where τνD,i > 0 and Π̃
ν
i aims to Π̃

ν
i →

∑
j 6=i∇fj(Dν

(i)
,Xν

j ).

[optimization of Xi]: Given (Uν
(i)
,Xν

i ), each agent i updates Xi setting Di = Uν
(i)

and solving

X
ν+1
i , argmin

Xi

{
fi(U

ν
(i),Xi) +

τνX,i

2
‖Xi −X

ν
i ‖

2
F + gi(Xi)

}
,

with τνX,i > 0.
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Algorithmic Design
Step 2: Broadcasting

min
D∈D
{Xi}i

U(D,X) ,
I∑
i=1

{
1

2
‖Yi −DXi‖

2
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∑
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i=1
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Each agent i: maintains a local copy D(i) of D, and controls Xi :

1 [local optimization]: optimizes D(i) and Xi alternatingly by solving strongly convex

problems

2 [consensus update]: Each agent i collects U(j) from its neighbors and updates:

Dν+1
(i)

=
∑

j∈Ni[ν]
wνijU

ν
(j)

Question: How to distibutively determine the weights (wνij)i,j matching an arbitrary

(time-varying) digraph that will guarantee eventual consensus?
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Algorithmic Design
Consensus Weights Wν ,

(
wνij
)I
i,j=1

Doubly-stochasticity (Wν1 = 1 and 1TWν = 1T ) on digraphs [Cat-Say’10]

I not all digraphs admit a doubly-stochastic matrix
I when exists, constructing one calls for additional (de-)centralized algorithms

Our approach: Introducing a new consensus protocol requiring only column

stochasticity

Special case for W̃: push-sum weights
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ν+1
i =

∑
j∈Ni[ν]

w̃
ν
ij φ

ν
j

D
ν+1
(i)

=
1

φν+1
i

∑
j∈Ni[ν]

w̃
ν
ij φ

ν
jU

ν
(j)
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Algorithmic Design

min
D∈D
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U(D,X) ,
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1

2
‖Yi −DXi‖

2
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∑
j 6=i
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gi(Xi)

[optimization of D(i)]: Each agent i updates D(i) setting Xi = Xν
i and solving

D̃
ν
(i), argmin

D(i)∈D

{
fi

(
D(i),X

ν
i

)
+
τνD,i

2
‖D(i) −D

ν
(i)‖

2
F +

〈
Π̃
ν
i ,D(i) −D

ν
(i)

〉}

U
ν
(i) = D

ν
(i) + γ

ν
(D̃
ν
(i) −D

ν
(i))

where τνD,i > 0 and Π̃
ν
i aims to

Π̃
ν

i −→
∑
j 6=i
∇fj(D

ν
(i),X

ν
j )←−

∑
j∈N in

i
[ν]

∇fj(D
ν
(j),X

ν
j )

Question: How to choose Π̃
ν
i to convergence while using ONLY local information?
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Algorithmic Design
Local update of Π̃

ν

i

Π̃
ν

i −→
∑
j 6=i
∇fj(D

ν
(i),X

ν
j )

Distributed Tracking of Gradient Averages (similar to [DiLor-Scu’15]):

Θ̃
ν+1
i = 1

φ
ν+1
i

 ∑
j∈Ni[ν]

w̃
ν
ijφ

ν
j Θ̃

ν
j +

(
∇Dfi(D

ν+1
(i)

,X
ν+1
i )−∇Dfi(D

ν
(i),X

ν
i )

)

Π̃
ν+1
i = I · Θ̃ν+1

i −∇Dfi(D
ν+1
(i)

,Xν+1
i )

with Θ0
i = ∇fi(D0

(i),X
0
i ).
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D4L alg.: Decentralized Dictionary Learning over Dynamic Digraphs

Data: {γν}ν > 0, φ0
i = 1, D0

(i) ∈ D, X0
i = 0, Θ̃

0
i = ∇Dfi(D0

(i),X
0
i ) for all i’s; Set ν = 0;

(S.1): If (Dν(i),X
ν
i ) satisfies a suitable termination criterion, STOP;

(S.2): [Optimization step]: Each agent i updates D(i) and Xi locally:

D̃ν(i) = argmin
D(i)∈D

fi

(
D(i),X

ν
i

)
+
〈
Π̃
ν
i ,D(i) −Dν(i)

〉
+
τνD,i

2
‖D(i) −Dν(i)‖

2
F

Uν(i) = Dν(i) + γν(D̃ν(i) −Dν(i))

Xν+1
i = argmin

Xi

fi(U
ν
(i),Xi) + gi(Xi) +

τνX,i
2
‖Xi −Xνi ‖

2
F

(S.3): [Consensus step]: Each agent i collects from its neighbors and updates

φν+1
i =

∑
j∈Ni[ν]

w̃
ν
ij φ

ν
j

Dν+1
(i)

= 1

φ
ν+1
i

∑
j∈Ni[ν]

w̃
ν
ij φ

ν
jU

ν
(j)

Θ̃
ν+1
i = 1

φ
ν+1
i

 ∑
j∈Ni[ν]

w̃
ν
ijφ

ν
j Θ̃

ν
j +

(
∇Dfi(D

ν+1
(i)

,X
ν+1
i )−∇Dfi(D

ν
(i),X

ν
i )

)
Π̃
ν+1
i = I · Θ̃ν+1

i −∇Dfi(D
ν+1
(i)

,Xν+1
i )

(S.4): ν ← ν + 1 and go to (S.1).
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Theorem: D4L Convergence

Given the optimization problem (P) in the setting above, suppose that

[Mixing Weights]: The weights W̃ν , (w̃νij)
I
i,j=1 are chosen so that, for all ν, it

holds

w̃νij =

{
> θ ∈ (0, 1] if j ∈ Ni[ν];
= 0 otherwise.

, 1TW̃ν = 1T

[Step-size]: The step-size γν ∈ [0, 1] is chosen so that
∑
ν γ

ν = +∞ and∑
ν (γ

ν)2 < +∞.

[Proximal weights]: The sequences {τνD,i} and {τνX,i} satisfy:

τνX,i = max
(
σmax(U

ν
(i))

2, ε1
)
, τνD,i = ε2,

with ε1, ε2 > 0.

Then, we have:

(a) [convergence]:{(Dν
,Xν)}ν is bounded (where D

ν
, 1

I

∑I
i=1 φ

ν
iD

ν
(i)) and all of its

limit points are stationary solutions of Problem (P1);

(b) [consensus]: All {Dν
(i)}ν asymptotically reach consensus, i.e., ||Dν

(i) −D
ν || −→

n→∞
0,

for all i = 1, 2, . . . , I
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Numerical Results

1 Image restoration (denoising)

2 Biclustering of gene expressions
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Distributed Image Restoration (denoising)

Setup:

Corrupted 512× 512 image

255,000 patches of size 8× 8

Network of 150 agents

Dictionary D of size 64× 64

Total of (≈) 16.4 million
variables Figure: original and noisy images
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Distributed Image Restoration (denoising)

min
D∈D
{Xi}i

I∑
i=1

{
1

2
‖Yi −DXi‖2︸ ︷︷ ︸
fi(D,Xi)

+λ‖Xi‖1+
µ

2
‖Xi‖2F

}
Yi = patches of noisy image
D = dictionary
Xi = sparse representation

Two instances of our algorithm:

Plain D4L: using original function fi in the convex subproblems;

I Dν
(i)

has closed form solution

I Xν+1
i is solution of a LASSO

Linearized D4L: using first order approximation of function fi in the convex subproblems

I Dν
(i)

has closed form solution

I Xν+1
i has closed form solution
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Distributed Image Restoration (denoising)
Merit functions

Optimality merit: ∆ν = distance from stationarity of (D
ν
,Xν) [Fac-Scu-Sag’15]

Consensus merit: eν = consensus disagreement

number of message exchanges
0 500 1000
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ATC [Cha-Ric’13]
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number of message exchanges
0 500 1000

∆
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100

Linearized D4L
Plain D4L
ATC [Cha-Ric’13]
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Distributed Image Restoration (denoising)
Quality of the reconstruction (∼ 200 message exchanges)

Figure: Comparison after 200 message exchanges

Figure: Comparison of reconstructed images after 200 and 1000 message exchanges
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Distributed Image Restoration (denoising)
Computational time per iteration

Linearized D4L Plain D4L ATC

Averaged Comp.
Time (sec)

2.862 11.328 9.838

Table: Computation time per message passing

Linearized D4L
PSNR=27.2886db

MSE=121.4007

Plain D4L
PSNR=25.5253db

MSE=182.2011

ATC
PSNR=24.4582db

MSE=232.9464

Figure: Reconstructed images after ∼300 seconds
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Conclusions

We proposed a novel decentralized algorithmic framework for a fairly general
class of Dictionary Learning problems

I parallel and distributed updates
I arbitrary digraphs
I shared D and private variables {Xi}i

Preliminary numerical results show promising performance

The framework is applicable to a variety of other learning problems (with
general biconvex function)

I supervised/discriminative learning
I low-rank plus sparse decomposition
I sparse SVD
I ...


