D⁴L: Decentralized Dictionary Learning over Dynamic Digraphs

Amir Daneshmand[†], Ying Sun[†], Gesualdo Scutari[†] Francisco Facchinei[‡]

[†]Purdue University, ‡ University of Rome La Sapienza

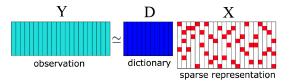
The 42nd IEEE International Conference on Acoustics, Speech and Signal Processing

March 5-9, 2017

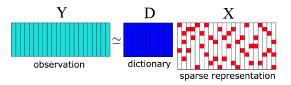
Outline

- Motivation and problem formulation
- Main challenges and literature overview
- Algorithmic framework (bottom-up approach)
- Numerical results
- Conclusions

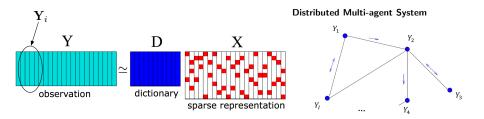
Dictionary Learning



Dictionary Learning



Applications: estimation, image denoising/debluring/inpainting, superresolution, dimensionality reduction, bi-clustering, feature-extraction, classification, prediction, ...



Goal: designing a distributed algorithm over a network

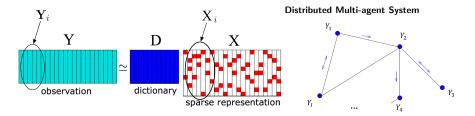


Goal: designing a distributed algorithm over a network

Distributed Dictionary Learning

$$\min_{\mathbf{D}\in\mathcal{D}, \mathbf{X}\triangleq(\mathbf{X}_i)_{i=1}^{I}} \sum_{i=1}^{I} \underbrace{\frac{1}{2} \|\mathbf{Y}_i - \mathbf{D}\mathbf{X}_i\|_F^2}_{\triangleq f_i(\mathbf{D},\mathbf{X}_i)} + \underbrace{\lambda \|\mathbf{X}_i\|_1 + \frac{\mu}{2} \|\mathbf{X}_i\|_F^2}_{\triangleq g_i(\mathbf{X}_i)}$$

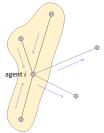
where $\mu, \lambda > 0$ and \mathcal{D} is a compact convex set.



Goal: designing a distributed algorithm over a network

Network Model

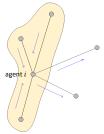
- Dynamic network topology: Agents are embedded in a possibly *time-varying* directed communication graph G[v]
 - \blacktriangleright The vertices of $\mathcal{G}[\nu]$ correspond to the agents
 - The set of directed edges may change over the time
 - ▶ N_i[ν]: set of agents that can send information to agent i at time ν including node i



- *T*-strongly connected digraphs: $\exists T \in \mathbb{N}_+$ such that the graph $([I], \bigcup_{t=0,\dots,T-1} \mathcal{G}[t+\nu])$ is connected for all $\nu \geq 0$.
- Local information: each agent i knows its f_i and g_i but not $\sum_{j \neq i} f_j$
- Local communications: agents can only receive information from their "neighbors"

Network Model

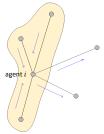
- Dynamic network topology: Agents are embedded in a possibly *time-varying* directed communication graph G[v]
 - The vertices of $\mathcal{G}[\nu]$ correspond to the agents
 - The set of directed edges may change over the time
 - ▶ N_i[ν]: set of agents that can send information to agent i at time ν including node i



- *T*-strongly connected digraphs: $\exists T \in \mathbb{N}_+$ such that the graph $([I], \bigcup_{t=0,\dots,T-1} \mathcal{G}[t+\nu])$ is connected for all $\nu \geq 0$.
- Local information: each agent i knows its f_i and g_i but not $\sum_{j \neq i} f_j$
- Local communications: agents can only receive information from their "neighbors"

Network Model

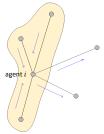
- Dynamic network topology: Agents are embedded in a possibly *time-varying* directed communication graph G[v]
 - \blacktriangleright The vertices of $\mathcal{G}[\nu]$ correspond to the agents
 - The set of directed edges may change over the time
 - ▶ N_i[ν]: set of agents that can send information to agent i at time ν including node i



- *T*-strongly connected digraphs: $\exists T \in \mathbb{N}_+$ such that the graph $([I], \bigcup_{t=0,\dots,T-1} \mathcal{G}[t+\nu])$ is connected for all $\nu \geq 0$.
- Local information: each agent *i* knows its f_i and g_i but not $\sum_{i \neq i} f_j$
- Local communications: agents can only receive information from their "neighbors"

Network Model

- Dynamic network topology: Agents are embedded in a possibly *time-varying* directed communication graph G[v]
 - The vertices of $\mathcal{G}[\nu]$ correspond to the agents
 - The set of directed edges may change over the time
 - ▶ N_i[ν]: set of agents that can send information to agent i at time ν including node i



- *T*-strongly connected digraphs: $\exists T \in \mathbb{N}_+$ such that the graph $([I], \bigcup_{t=0,\dots,T-1} \mathcal{G}[t+\nu])$ is connected for all $\nu \geq 0$.
- Local information: each agent i knows its f_i and g_i but not $\sum_{j \neq i} f_j$
- Local communications: agents can only receive information from their "neighbors"

- Ad-hoc schemes for distributed DL problem: [Lia-Zha-Zen'14], [Che-Zai-Say'15], [Wai-Cha-Sca'15], [Cha-Ric'13], [Kop-Gar-War-Stum-Rib'15,'16]
 - Time invariant undirected graphs
 - No proof of convergence to stationary solutions of DL problem
- Distributed Nonconvex Multiagent Optimization: [DiLor-Scu'15]
 - ► Can not handle both X_i's (private variables) and D (shared variables)
 - Some technical conditions are not satisfied; e.g., ∇f_i is NOT bounded or Lipschitz continuous over the feasible set
- Our contribution: extending [Dan-Scu-Fac, Asilomar'16] to deal with time-varying digraphs
- Full picture: A. Daneshmand, Y. Sun, G. Scutari, F. Facchinei, B. M. Sadler, *"Decentralized Dictionary learning over Dynamic Digraphs"*, J. Mach. Learn. Res. (under review). Available online.

- Ad-hoc schemes for distributed DL problem: [Lia-Zha-Zen'14], [Che-Zai-Say'15], [Wai-Cha-Sca'15], [Cha-Ric'13], [Kop-Gar-War-Stum-Rib'15,'16]
 - Time invariant undirected graphs
 - No proof of convergence to stationary solutions of DL problem
- Distributed Nonconvex Multiagent Optimization: [DiLor-Scu'15]
 - ► Can not handle both X_i's (private variables) and D (shared variables)
 - Some technical conditions are not satisfied; e.g., ∇f_i is NOT bounded or Lipschitz continuous over the feasible set
- Our contribution: extending [Dan-Scu-Fac, Asilomar'16] to deal with time-varying digraphs
- Full picture: A. Daneshmand, Y. Sun, G. Scutari, F. Facchinei, B. M. Sadler, "Decentralized Dictionary learning over Dynamic Digraphs", J. Mach. Learn. Res. (under review). Available online.

- Ad-hoc schemes for distributed DL problem: [Lia-Zha-Zen'14], [Che-Zai-Say'15], [Wai-Cha-Sca'15], [Cha-Ric'13], [Kop-Gar-War-Stum-Rib'15,'16]
 - Time invariant undirected graphs
 - No proof of convergence to stationary solutions of DL problem
- Distributed Nonconvex Multiagent Optimization: [DiLor-Scu'15]
 - ► Can not handle both X_i's (private variables) and D (shared variables)
 - Some technical conditions are not satisfied; e.g., ∇f_i is NOT bounded or Lipschitz continuous over the feasible set
- Our contribution: extending [Dan-Scu-Fac, Asilomar'16] to deal with time-varying digraphs
- Full picture: A. Daneshmand, Y. Sun, G. Scutari, F. Facchinei, B. M. Sadler, "Decentralized Dictionary learning over Dynamic Digraphs", J. Mach. Learn. Res. (under review). Available online.

- Ad-hoc schemes for distributed DL problem: [Lia-Zha-Zen'14], [Che-Zai-Say'15], [Wai-Cha-Sca'15], [Cha-Ric'13], [Kop-Gar-War-Stum-Rib'15,'16]
 - Time invariant undirected graphs
 - No proof of convergence to stationary solutions of DL problem
- Distributed Nonconvex Multiagent Optimization: [DiLor-Scu'15]
 - ► Can not handle both X_i's (private variables) and D (shared variables)
 - Some technical conditions are not satisfied; e.g., ∇f_i is NOT bounded or Lipschitz continuous over the feasible set
- Our contribution: extending [Dan-Scu-Fac, Asilomar'16] to deal with time-varying digraphs
- Full picture: A. Daneshmand, Y. Sun, G. Scutari, F. Facchinei, B. M. Sadler, *"Decentralized Dictionary learning over Dynamic Digraphs"*, J. Mach. Learn. Res. (under review). Available online.

Main Idea

$$\min_{\substack{\mathbf{D} \in \mathcal{D} \\ \{\mathbf{X}_i\}_i}} U(\mathbf{D}, \mathbf{X}) \triangleq \sum_{i=1}^{I} \left\{ \underbrace{\frac{1}{2} \| \mathbf{Y}_i - \mathbf{D} \mathbf{X}_i \|_F^2}_{f_i(\mathbf{D}, \mathbf{X}_i)} + g_i(\mathbf{X}_i) \right\},$$

Each agent *i*: maintains a *local copy* $\mathbf{D}_{(i)}$ of \mathbf{D} , and controls \mathbf{X}_i :

- [local optimization]: optimizes D_(i) and X_i alternatingly by solving strongly convex problems
- 2 [consensus update]: exchanges the local copies $D_{(i)}$ to force consensus

Step 1: Local Optimization

$$\min_{\substack{\mathbf{D}\in\mathcal{D}\\\{\mathbf{X}_i\}_i}} U(\mathbf{D}, \mathbf{X}) \triangleq \sum_{i=1}^{I} \left\{ \underbrace{\frac{1}{2} \|\mathbf{Y}_i - \mathbf{D}\mathbf{X}_i\|_F^2}_{f_i(\mathbf{D}, \mathbf{X}_i)} + g_i(\mathbf{X}_i) \right\}, \quad U(\mathbf{D}, \mathbf{X}) = f_i(\mathbf{D}, \mathbf{X}_i) + \sum_{j \neq i} f_j(\mathbf{D}, \mathbf{X}_j) + \sum_{i=1}^{I} g_i(\mathbf{X}_i)$$

[optimization of $D_{(i)}$]: Given $(D_{(i)}^{\nu}, X_i^{\nu})$, each agent i updates $D_{(i)}$ setting $X_i = X_i^{\nu}$ and solving

$$\begin{split} \widetilde{\mathbf{D}}_{(i)}^{\nu} &\triangleq \underset{\mathbf{D}_{(i)} \in \mathcal{D}}{\operatorname{argmin}} \left\{ f_{i} \left(\mathbf{D}_{(i)}, \mathbf{X}_{i}^{\nu} \right) + \frac{\tau_{D,i}^{\nu}}{2} \| \mathbf{D}_{(i)} - \mathbf{D}_{(i)}^{\nu} \|_{F}^{2} + \left\langle \widetilde{\mathbf{\Pi}}_{i}^{\nu}, \mathbf{D}_{(i)} - \mathbf{D}_{(i)}^{\nu} \right\rangle \right\} \\ \mathbf{U}_{(i)}^{\nu} &= \mathbf{D}_{(i)}^{\nu} + \gamma^{\nu} (\widetilde{\mathbf{D}}_{(i)}^{\nu} - \mathbf{D}_{(i)}^{\nu}) \end{split}$$

where $\tau_{D,i}^{\nu} > 0$ and $\widetilde{\Pi}_{i}^{\nu}$ aims to $\widetilde{\Pi}_{i}^{\nu} \to \sum_{j \neq i} \nabla f_{j}(\mathbf{D}_{(i)}^{\nu}, \mathbf{X}_{j}^{\nu})$.

[optimization of \mathbf{X}_i]: Given $(\mathbf{U}_{(i)}^{\nu}, \mathbf{X}_i^{\nu})$, each agent i updates \mathbf{X}_i setting $\mathbf{D}_i = \mathbf{U}_{(i)}^{\nu}$ and solving

$$\begin{split} \mathbf{X}_{i}^{\nu+1} &\triangleq \operatorname*{argmin}_{\mathbf{X}_{i}} \left\{ f_{i}(\mathbf{U}_{(i)}^{\nu},\mathbf{X}_{i}) + \frac{\tau_{X,i}^{\nu}}{2} \|\mathbf{X}_{i} - \mathbf{X}_{i}^{\nu}\|_{F}^{2} + g_{i}(\mathbf{X}_{i}) \right\},\\ \text{th } \tau_{X,i}^{\nu} > 0. \end{split}$$

Step 1: Local Optimization

$$\min_{\substack{\mathbf{D}\in\mathcal{D}\\\{\mathbf{X}_i\}_i}} U(\mathbf{D}, \mathbf{X}) \triangleq \sum_{i=1}^{I} \left\{ \underbrace{\frac{1}{2} \|\mathbf{Y}_i - \mathbf{D}\mathbf{X}_i\|_F^2}_{f_i(\mathbf{D}, \mathbf{X}_i)} + g_i(\mathbf{X}_i) \right\}, \quad U(\mathbf{D}, \mathbf{X}) = f_i(\mathbf{D}, \mathbf{X}_i) + \sum_{j \neq i} f_j(\mathbf{D}, \mathbf{X}_j) + \sum_{i=1}^{I} g_i(\mathbf{X}_i)$$

[optimization of $D_{(i)}$]: Given $(D_{(i)}^{\nu}, X_i^{\nu})$, each agent i updates $D_{(i)}$ setting $X_i = X_i^{\nu}$ and solving

$$\begin{split} \widetilde{\mathbf{D}}_{(i)}^{\nu} &\triangleq \underset{\mathbf{D}_{(i)} \in \mathcal{D}}{\operatorname{argmin}} \left\{ f_i \left(\mathbf{D}_{(i)}, \mathbf{X}_i^{\nu} \right) + \frac{\tau_{D,i}^{\nu}}{2} \| \mathbf{D}_{(i)} - \mathbf{D}_{(i)}^{\nu} \|_F^2 + \left\langle \widetilde{\mathbf{\Pi}}_i^{\nu}, \mathbf{D}_{(i)} - \mathbf{D}_{(i)}^{\nu} \right\rangle \right\} \\ \mathbf{U}_{(i)}^{\nu} &= \mathbf{D}_{(i)}^{\nu} + \gamma^{\nu} (\widetilde{\mathbf{D}}_{(i)}^{\nu} - \mathbf{D}_{(i)}^{\nu}) \end{split}$$

where $\tau_{D,i}^{\nu} > 0$ and $\widetilde{\Pi}_{i}^{\nu}$ aims to $\widetilde{\Pi}_{i}^{\nu} \rightarrow \sum_{j \neq i} \nabla f_{j}(\mathbf{D}_{(i)}^{\nu}, \mathbf{X}_{j}^{\nu})$.

[optimization of \mathbf{X}_i]: Given $(\mathbf{U}_{(i)}^{\nu}, \mathbf{X}_i^{\nu})$, each agent i updates \mathbf{X}_i setting $\mathbf{D}_i = \mathbf{U}_{(i)}^{\nu}$ and solving

$$\begin{split} \mathbf{X}_{i}^{\nu+1} &\triangleq \operatorname*{argmin}_{\mathbf{X}_{i}} \left\{ f_{i}(\mathbf{U}_{(i)}^{\nu},\mathbf{X}_{i}) + \frac{\tau_{X,i}^{\nu}}{2} \|\mathbf{X}_{i} - \mathbf{X}_{i}^{\nu}\|_{F}^{2} + g_{i}(\mathbf{X}_{i}) \right\},\\ &+ \tau_{X,i}^{\nu} > 0. \end{split}$$

Step 1: Local Optimization

$$\min_{\substack{\mathbf{D}\in\mathcal{D}\\\{\mathbf{X}_i\}_i}} U(\mathbf{D}, \mathbf{X}) \triangleq \sum_{i=1}^{I} \left\{ \underbrace{\frac{1}{2} \|\mathbf{Y}_i - \mathbf{D}\mathbf{X}_i\|_F^2}_{f_i(\mathbf{D}, \mathbf{X}_i)} + g_i(\mathbf{X}_i) \right\}, \quad U(\mathbf{D}, \mathbf{X}) = f_i(\mathbf{D}, \mathbf{X}_i) + \sum_{j \neq i} f_j(\mathbf{D}, \mathbf{X}_j) + \sum_{i=1}^{I} g_i(\mathbf{X}_i)$$

[optimization of $D_{(i)}$]: Given $(D_{(i)}^{\nu}, X_i^{\nu})$, each agent i updates $D_{(i)}$ setting $X_i = X_i^{\nu}$ and solving

$$\begin{split} \widetilde{\mathbf{D}}_{(i)}^{\nu} &\triangleq \underset{\mathbf{D}_{(i)} \in \mathcal{D}}{\operatorname{argmin}} \left\{ f_i \left(\mathbf{D}_{(i)}, \mathbf{X}_i^{\nu} \right) + \frac{\tau_{D,i}^{\nu}}{2} \| \mathbf{D}_{(i)} - \mathbf{D}_{(i)}^{\nu} \|_F^2 + \left\langle \widetilde{\mathbf{\Pi}}_i^{\nu}, \mathbf{D}_{(i)} - \mathbf{D}_{(i)}^{\nu} \right\rangle \right\} \\ \mathbf{U}_{(i)}^{\nu} &= \mathbf{D}_{(i)}^{\nu} + \gamma^{\nu} (\widetilde{\mathbf{D}}_{(i)}^{\nu} - \mathbf{D}_{(i)}^{\nu}) \end{split}$$

where $\tau_{D,i}^{\nu}>0$ and $\widetilde{\Pi}_{i}^{\nu}$ aims to $\widetilde{\Pi}_{i}^{\nu}\rightarrow\sum_{j\neq i}\nabla f_{j}(\mathbf{D}_{(i)}^{\nu},\mathbf{X}_{j}^{\nu}).$

[optimization of \mathbf{X}_i]: Given $(\mathbf{U}_{(i)}^{\nu}, \mathbf{X}_i^{\nu})$, each agent i updates \mathbf{X}_i setting $\mathbf{D}_i = \mathbf{U}_{(i)}^{\nu}$ and solving

$$\begin{split} \mathbf{X}_{i}^{\nu+1} &\triangleq \operatorname*{argmin}_{\mathbf{X}_{i}} \left\{ f_{i}(\mathbf{U}_{(i)}^{\nu},\mathbf{X}_{i}) + \frac{\tau_{X,i}^{\nu}}{2} \|\mathbf{X}_{i} - \mathbf{X}_{i}^{\nu}\|_{F}^{2} + g_{i}(\mathbf{X}_{i}) \right\}, \\ \text{with } \tau_{X,i}^{\nu} > 0. \end{split}$$

Step 2: Broadcasting

$$\min_{\substack{\mathbf{D}\in\mathcal{D}\\\{\mathbf{X}_i\}_i}} U(\mathbf{D},\mathbf{X}) \triangleq \sum_{i=1}^{I} \left\{ \underbrace{\frac{1}{2} \|\mathbf{Y}_i - \mathbf{D}\mathbf{X}_i\|_F^2}_{f_i(\mathbf{D},\mathbf{X}_i)} + g_i(\mathbf{X}_i) \right\}, \quad U(\mathbf{D},\mathbf{X}) = f_i(\mathbf{D},\mathbf{X}_i) + \sum_{j\neq i} f_j(\mathbf{D},\mathbf{X}_j) + \sum_{i=1}^{I} g_i(\mathbf{X}_i)$$

Each agent *i*: maintains a *local copy* $\mathbf{D}_{(i)}$ of \mathbf{D} , and controls \mathbf{X}_i :

[local optimization]: optimizes D_(i) and X_i alternatingly by solving strongly convex problems

[consensus update]: Each agent i collects $\mathbf{U}_{(j)}$ from its neighbors and updates:

$$\mathbf{D}_{(i)}^{
u+1} = \sum_{j \in \mathcal{N}_i[
u]} w_{ij}^
u \mathbf{U}_{(j)}^
u$$

Question: How to distibutively determine the weights $(w_{ij}^{\nu})_{i,j}$ matching an *arbitrary* (*time-varying*) digraph that will guarantee eventual consensus?

Step 2: Broadcasting

$$\min_{\substack{\mathbf{D}\in\mathcal{D}\\\{\mathbf{X}_i\}_i}} U(\mathbf{D},\mathbf{X}) \triangleq \sum_{i=1}^{I} \left\{ \underbrace{\frac{1}{2} \|\mathbf{Y}_i - \mathbf{D}\mathbf{X}_i\|_F^2}_{f_i(\mathbf{D},\mathbf{X}_i)} + g_i(\mathbf{X}_i) \right\}, \quad U(\mathbf{D},\mathbf{X}) = f_i(\mathbf{D},\mathbf{X}_i) + \sum_{j\neq i} f_j(\mathbf{D},\mathbf{X}_j) + \sum_{i=1}^{I} g_i(\mathbf{X}_i)$$

Each agent *i*: maintains a *local copy* $\mathbf{D}_{(i)}$ of \mathbf{D} , and controls \mathbf{X}_i :

[local optimization]: optimizes D_(i) and X_i alternatingly by solving strongly convex problems

2 [consensus update]: Each agent i collects $U_{(j)}$ from its neighbors and updates:

$$\mathbf{D}_{(i)}^{\nu+1} = \sum_{j \in \mathcal{N}_i[\nu]} w_{ij}^{\nu} \mathbf{U}_{(j)}^{\nu}$$

Question: How to distibutively determine the weights $(w_{ij}^{\nu})_{i,j}$ matching an *arbitrary* (*time-varying*) digraph that will guarantee eventual consensus?

Step 2: Broadcasting

$$\min_{\substack{\mathbf{D}\in\mathcal{D}\\\{\mathbf{X}_i\}_i}} U(\mathbf{D}, \mathbf{X}) \triangleq \sum_{i=1}^{I} \left\{ \underbrace{\frac{1}{2} \|\mathbf{Y}_i - \mathbf{D}\mathbf{X}_i\|_F^2}_{f_i(\mathbf{D}, \mathbf{X}_i)} + g_i(\mathbf{X}_i) \right\}, \quad U(\mathbf{D}, \mathbf{X}) = f_i(\mathbf{D}, \mathbf{X}_i) + \sum_{j \neq i} f_j(\mathbf{D}, \mathbf{X}_j) + \sum_{i=1}^{I} g_i(\mathbf{X}_i)$$

Each agent *i*: maintains a *local copy* $\mathbf{D}_{(i)}$ of \mathbf{D} , and controls \mathbf{X}_i :

[local optimization]: optimizes D_(i) and X_i alternatingly by solving strongly convex problems

2 [consensus update]: Each agent i collects $U_{(i)}$ from its neighbors and updates:

$$\mathbf{D}_{(i)}^{\nu+1} = \sum_{j \in \mathcal{N}_i[\nu]} w_{ij}^{\nu} \mathbf{U}_{(j)}^{\nu}$$

Question: How to distibutively determine the weights $(w_{ij}^{\nu})_{i,j}$ matching an *arbitrary* (*time-varying*) digraph that will guarantee eventual consensus?

Consensus Weights $\mathbf{W}^{\nu} \triangleq \left(w_{ij}^{\nu}\right)_{i,j=1}^{I}$

- Doubly-stochasticity $(\mathbf{W}^{\nu}\mathbf{1} = \mathbf{1} \text{ and } \mathbf{1}^{T}\mathbf{W}^{\nu} = \mathbf{1}^{T})$ on digraphs [Cat-Say'10]
 - not all digraphs admit a doubly-stochastic matrix
 - when exists, constructing one calls for additional (de-)centralized algorithms
- Our approach: Introducing a new consensus protocol requiring only column stochasticity

Consensus Weights $\mathbf{W}^{\nu} \triangleq \left(w_{ij}^{\nu}\right)_{i,j=1}^{I}$

- Doubly-stochasticity $(\mathbf{W}^{\nu}\mathbf{1} = \mathbf{1} \text{ and } \mathbf{1}^{T}\mathbf{W}^{\nu} = \mathbf{1}^{T})$ on digraphs [Cat-Say'10]
 - not all digraphs admit a doubly-stochastic matrix
 - when exists, constructing one calls for additional (de-)centralized algorithms
- Our approach: Introducing a new consensus protocol requiring only column stochasticity

column stochastic matrix (equally mixing) $\widetilde{\mathbf{W}}^{\nu} \triangleq \left(\tilde{w}_{ij}^{\nu}\right)_{i,j=1}^{l}$

Consensus Weights $\mathbf{W}^{\nu} \triangleq \left(w_{ij}^{\nu}\right)_{i,j=1}^{I}$

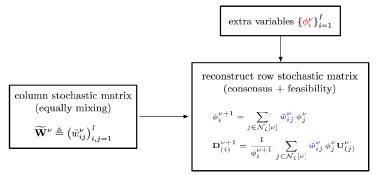
- Doubly-stochasticity $(\mathbf{W}^{\nu}\mathbf{1} = \mathbf{1} \text{ and } \mathbf{1}^{T}\mathbf{W}^{\nu} = \mathbf{1}^{T})$ on digraphs [Cat-Say'10]
 - not all digraphs admit a doubly-stochastic matrix
 - when exists, constructing one calls for additional (de-)centralized algorithms
- Our approach: Introducing a new consensus protocol requiring only column stochasticity

extra variables $\{ \phi_i^\nu \}_{i=1}^I$

column stochastic matrix (equally mixing) $\widetilde{\mathbf{W}}^{\nu} \triangleq \left(\tilde{w}_{ij}^{\nu} \right)_{i,j=1}^{l}$

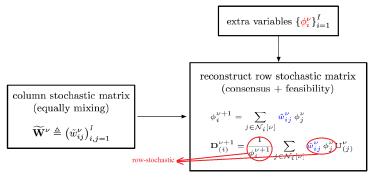
Consensus Weights $\mathbf{W}^{\nu} \triangleq \left(w_{ij}^{\nu}\right)_{i,j=1}^{I}$

- Doubly-stochasticity $(\mathbf{W}^{\nu}\mathbf{1} = \mathbf{1} \text{ and } \mathbf{1}^{T}\mathbf{W}^{\nu} = \mathbf{1}^{T})$ on digraphs [Cat-Say'10]
 - not all digraphs admit a doubly-stochastic matrix
 - when exists, constructing one calls for additional (de-)centralized algorithms
- Our approach: Introducing a new consensus protocol requiring only column stochasticity



Consensus Weights $\mathbf{W}^{\nu} \triangleq \left(w_{ij}^{\nu}\right)_{i,j=1}^{I}$

- Doubly-stochasticity $(\mathbf{W}^{\nu}\mathbf{1} = \mathbf{1} \text{ and } \mathbf{1}^{T}\mathbf{W}^{\nu} = \mathbf{1}^{T})$ on digraphs [Cat-Say'10]
 - not all digraphs admit a doubly-stochastic matrix
 - when exists, constructing one calls for additional (de-)centralized algorithms
- Our approach: Introducing a new consensus protocol requiring only column stochasticity



Step 2: Broadcasting

$$\min_{\substack{\mathbf{D}\in\mathcal{D}\\\{\mathbf{X}_i\}_i}} U(\mathbf{D},\mathbf{X}) \triangleq \sum_{i=1}^{I} \left\{ \underbrace{\frac{1}{2} \|\mathbf{Y}_i - \mathbf{D}\mathbf{X}_i\|^2}_{f_i(\mathbf{D},\mathbf{X}_i)} + g_i(\mathbf{X}_i) \right\}, \quad U(\mathbf{D},\mathbf{X}) = f_i(\mathbf{D},\mathbf{X}_i) + \sum_{j\neq i} f_j(\mathbf{D},\mathbf{X}_j) + \sum_{i=1}^{I} g_i(\mathbf{X}_i) + \sum_{j\neq i} f_j(\mathbf{D},\mathbf{X}_j) + \sum_{i=1}^{I} g_i(\mathbf{X}_i) + \sum_{j\neq i} f_j(\mathbf{D},\mathbf{X}_j) + \sum_{j\neq$$

Each agent *i*: maintains a *local copy* $D_{(i)}$ of D, and controls X_i :

[local optimization]: optimizes D_(i) and X_i alternatingly by solving strongly convex problems

2 [consensus update]: collects $U_{(j)}$ from its neighbors and updates:

$$\begin{split} \phi_i^{\nu+1} &= \sum_{j \in \mathcal{N}_i[\nu]} \tilde{w}_{ij}^{\nu} \phi_j^{\nu} \\ \mathbf{D}_{(i)}^{\nu+1} &= \frac{1}{\phi_i^{\nu+1}} \sum_{j \in \mathcal{N}_i[\nu]} \tilde{w}_{ij}^{\nu} \phi_j^{\nu} \mathbf{U}_{(j)}^{\nu} \end{split}$$

$$\min_{\substack{\mathbf{D}\in\mathcal{D}\\\{\mathbf{X}_i\}_i}} U(\mathbf{D}, \mathbf{X}) \triangleq \sum_{i=1}^{I} \left\{ \underbrace{\frac{1}{2} \|\mathbf{Y}_i - \mathbf{D}\mathbf{X}_i\|^2}_{f_i(\mathbf{D}, \mathbf{X}_i)} + g_i(\mathbf{X}_i) \right\}, \quad U(\mathbf{D}, \mathbf{X}) = f_i(\mathbf{D}, \mathbf{X}_i) + \sum_{j\neq i}^{I} f_j(\mathbf{D}, \mathbf{X}_j) + \sum_{i=1}^{I} g_i(\mathbf{X}_i)$$

[optimization of $\mathbf{D}_{(i)}$]: Each agent i updates $\mathbf{D}_{(i)}$ setting $\mathbf{X}_i = \mathbf{X}_i^{\nu}$ and solving

$$\begin{split} \widetilde{\mathbf{D}}_{(i)}^{\nu} &\triangleq \underset{\mathbf{D}_{(i)} \in \mathcal{D}}{\operatorname{argmin}} \left\{ f_i \left(\mathbf{D}_{(i)}, \mathbf{X}_i^{\nu} \right) + \frac{\tau_{D,i}^{\nu}}{2} \| \mathbf{D}_{(i)} - \mathbf{D}_{(i)}^{\nu} \|_F^2 + \left\langle \widetilde{\mathbf{\Pi}}_i^{\nu}, \mathbf{D}_{(i)} - \mathbf{D}_{(i)}^{\nu} \right\rangle \right\} \\ \mathbf{U}_{(i)}^{\nu} &= \mathbf{D}_{(i)}^{\nu} + \gamma^{\nu} (\widetilde{\mathbf{D}}_{(i)}^{\nu} - \mathbf{D}_{(i)}^{\nu}) \end{split}$$

where $\tau^{\nu}_{D,i}>0$ and $\widetilde{\Pi}^{\nu}_{i}$ aims to

$$\widetilde{\boldsymbol{\Pi}}_{i}^{\nu} \longrightarrow \sum_{j \neq i} \nabla f_{j}(\mathbf{D}_{(i)}^{\nu}, \mathbf{X}_{j}^{\nu})$$

Question: How to choose $\widetilde{\Pi}_{i}^{\nu}$ to convergence while using ONLY *local* information?

$$\min_{\substack{\mathbf{D}\in\mathcal{D}\\\{\mathbf{X}_i\}_i}} U(\mathbf{D}, \mathbf{X}) \triangleq \sum_{i=1}^{I} \left\{ \underbrace{\frac{1}{2} \|\mathbf{Y}_i - \mathbf{D}\mathbf{X}_i\|^2}_{f_i(\mathbf{D}, \mathbf{X}_i)} + g_i(\mathbf{X}_i) \right\}, \quad U(\mathbf{D}, \mathbf{X}) = f_i(\mathbf{D}, \mathbf{X}_i) + \sum_{j\neq i}^{I} f_j(\mathbf{D}, \mathbf{X}_j) + \sum_{i=1}^{I} g_i(\mathbf{X}_i)$$

[optimization of $\mathbf{D}_{(i)}$]: Each agent i updates $\mathbf{D}_{(i)}$ setting $\mathbf{X}_i = \mathbf{X}_i^{\nu}$ and solving

$$\begin{split} \widetilde{\mathbf{D}}_{(i)}^{\nu} &\triangleq \underset{\mathbf{D}_{(i)} \in \mathcal{D}}{\operatorname{argmin}} \left\{ f_i \left(\mathbf{D}_{(i)}, \mathbf{X}_i^{\nu} \right) + \frac{\tau_{D,i}^{\nu}}{2} \| \mathbf{D}_{(i)} - \mathbf{D}_{(i)}^{\nu} \|_F^2 + \left\langle \widetilde{\mathbf{\Pi}}_i^{\nu}, \mathbf{D}_{(i)} - \mathbf{D}_{(i)}^{\nu} \right\rangle \right\} \\ \mathbf{U}_{(i)}^{\nu} &= \mathbf{D}_{(i)}^{\nu} + \gamma^{\nu} (\widetilde{\mathbf{D}}_{(i)}^{\nu} - \mathbf{D}_{(i)}^{\nu}) \end{split}$$

where $\tau^{\nu}_{D,i}>0$ and $\widetilde{\Pi}^{\nu}_i$ aims to

$$\widetilde{\mathbf{\Pi}}_{i}^{\nu} \longrightarrow \sum_{j \neq i} \nabla f_{j}(\mathbf{D}_{(i)}^{\nu}, \mathbf{X}_{j}^{\nu}) \leftarrow \sum_{j \in \mathcal{N}_{i}[\nu]} \nabla f_{j}(\mathbf{D}_{(j)}^{\nu}, \mathbf{X}_{j}^{\nu})$$

Question: How to choose $\widetilde{\Pi}_{i}^{\nu}$ to convergence while using ONLY *local* information?

Algorithmic Design Local update of $\widetilde{\Pi}_{i}^{\nu}$

$$\widetilde{\Pi}_{i}^{\nu} \longrightarrow \sum_{j \neq i} \nabla f_{j}(\mathbf{D}_{(i)}^{\nu}, \mathbf{X}_{j}^{\nu})$$

Distributed Tracking of Gradient Averages (similar to [DiLor-Scu'15]):

$$\begin{split} \tilde{\Theta}_{i}^{\nu+1} &= \frac{1}{\phi_{i}^{\nu+1}} \left(\sum_{j \in \mathcal{N}_{i}[\nu]} \tilde{w}_{ij}^{\nu} \phi_{j}^{\nu} \tilde{\Theta}_{j}^{\nu} + \left(\nabla_{D} f_{i}(\mathbf{D}_{(i)}^{\nu+1}, \mathbf{X}_{i}^{\nu+1}) - \nabla_{D} f_{i}(\mathbf{D}_{(i)}^{\nu}, \mathbf{X}_{i}^{\nu}) \right) \right) \\ \tilde{\Pi}_{i}^{\nu+1} &= I \cdot \tilde{\Theta}_{i}^{\nu+1} - \nabla_{D} f_{i}(\mathbf{D}_{(i)}^{\nu+1}, \mathbf{X}_{i}^{\nu+1}) \end{split}$$

with $\Theta_i^0 = \nabla f_i(\mathbf{D}_{(i)}^0, \mathbf{X}_i^0).$

Algorithmic Design Local update of $\widetilde{\Pi}_{i}^{\nu}$

$$\widetilde{\boldsymbol{\Pi}}_{i}^{\nu} \longrightarrow \sum_{j \neq i} \nabla f_{j}(\mathbf{D}_{(i)}^{\nu}, \mathbf{X}_{j}^{\nu})$$

• Distributed Tracking of Gradient Averages (similar to [DiLor-Scu'15]):

$$\begin{split} \tilde{\boldsymbol{\Theta}}_{i}^{\nu+1} &= \frac{1}{\phi_{i}^{\nu+1}} \left(\sum_{j \in \mathcal{N}_{i}[\nu]} \tilde{w}_{ij}^{\nu} \phi_{j}^{\nu} \tilde{\boldsymbol{\Theta}}_{j}^{\nu} + \left(\nabla_{D} f_{i}(\mathbf{D}_{(i)}^{\nu+1}, \mathbf{X}_{i}^{\nu+1}) - \nabla_{D} f_{i}(\mathbf{D}_{(i)}^{\nu}, \mathbf{X}_{i}^{\nu}) \right) \right) \\ \tilde{\boldsymbol{\Pi}}_{i}^{\nu+1} &= I \cdot \tilde{\boldsymbol{\Theta}}_{i}^{\nu+1} - \nabla_{D} f_{i}(\mathbf{D}_{(i)}^{\nu+1}, \mathbf{X}_{i}^{\nu+1}) \end{split}$$

with $\mathbf{\Theta}_{i}^{0} = \nabla f_{i}(\mathbf{D}_{(i)}^{0}, \mathbf{X}_{i}^{0}).$

D⁴L alg.: Decentralized Dictionary Learning over Dynamic Digraphs

Data: $\{\gamma^{\nu}\}_{\nu} > 0$, $\phi_i^0 = 1$, $\mathbf{D}_{(i)}^0 \in \mathcal{D}$, $\mathbf{X}_i^0 = 0$, $\tilde{\mathbf{\Theta}}_i^0 = \nabla_D f_i(\mathbf{D}_{(i)}^0, \mathbf{X}_i^0)$ for all *i*'s; Set $\nu = 0$; (S.1): If $(\mathbf{D}_{(i)}^{\nu}, \mathbf{X}_i^{\nu})$ satisfies a suitable termination criterion, STOP;

(S.2): [Optimization step]: Each agent i updates $D_{(i)}$ and X_i locally:

$$\begin{split} \tilde{\mathbf{D}}_{(i)}^{\nu} &= \underset{\mathbf{D}_{(i)} \in \mathcal{D}}{\operatorname{argmin}} f_i \left(\mathbf{D}_{(i)}, \mathbf{X}_i^{\nu} \right) + \left\langle \tilde{\mathbf{\Pi}}_i^{\nu}, \mathbf{D}_{(i)} - \mathbf{D}_{(i)}^{\nu} \right\rangle + \frac{\tau_{D,i}^{\nu}}{2} \| \mathbf{D}_{(i)} - \mathbf{D}_{(i)}^{\nu} \|_F^2 \\ \mathbf{U}_{(i)}^{\nu} &= \mathbf{D}_{(i)}^{\nu} + \gamma^{\nu} (\tilde{\mathbf{D}}_{(i)}^{\nu} - \mathbf{D}_{(i)}^{\nu}) \\ \mathbf{X}_i^{\nu+1} &= \underset{\mathbf{X}_i}{\operatorname{argmin}} f_i (\mathbf{U}_{(i)}^{\nu}, \mathbf{X}_i) + g_i (\mathbf{X}_i) + \frac{\tau_{X,i}^{\nu}}{2} \| \mathbf{X}_i - \mathbf{X}_i^{\nu} \|_F^2 \end{split}$$

(S.3): [Consensus step]: Each agent *i* collects from its neighbors and updates

$$\begin{split} \phi_{i}^{\nu+1} &= \sum_{j \in \mathcal{N}_{i}[\nu]} \tilde{w}_{ij}^{\nu} \phi_{j}^{\nu} \\ \mathbf{D}_{(i)}^{\nu+1} &= \frac{1}{\phi_{i}^{\nu+1}} \sum_{j \in \mathcal{N}_{i}[\nu]} \tilde{w}_{ij}^{\nu} \phi_{j}^{\nu} \mathbf{U}_{(j)}^{\nu} \\ \tilde{\mathbf{\Theta}}_{i}^{\nu+1} &= \frac{1}{\phi_{i}^{\nu+1}} \left(\sum_{j \in \mathcal{N}_{i}[\nu]} \tilde{w}_{ij}^{\nu} \phi_{j}^{\nu} \tilde{\mathbf{\Theta}}_{j}^{\nu} + \left(\nabla_{D} f_{i}(\mathbf{D}_{(i)}^{\nu+1}, \mathbf{X}_{i}^{\nu+1}) - \nabla_{D} f_{i}(\mathbf{D}_{(i)}^{\nu}, \mathbf{X}_{i}^{\nu}) \right) \right) \\ \tilde{\mathbf{\Pi}}_{i}^{\nu+1} &= I \cdot \tilde{\mathbf{\Theta}}_{i}^{\nu+1} - \nabla_{D} f_{i}(\mathbf{D}_{(i)}^{\nu+1}, \mathbf{X}_{i}^{\nu+1}) \end{split}$$

(S.4): $\nu \leftarrow \nu + 1$ and go to (S.1).

Theorem: D⁴L Convergence

Given the optimization problem (P) in the setting above, suppose that

• [Mixing Weights]: The weights $\widetilde{\mathbf{W}}^{\nu} \triangleq (\tilde{w}_{ij}^{\nu})_{i,j=1}^{I}$ are chosen so that, for all ν , it holds

$$\tilde{w}_{ij}^{\nu} = \begin{cases} > \theta \in (0,1] & \text{if } j \in \mathcal{N}_i[\nu]; \\ = 0 & \text{otherwise.} \end{cases}, \quad \mathbf{1}^T \widetilde{\mathbf{W}}^{\nu} = \mathbf{1}^T$$

- [Step-size]: The step-size $\gamma^{\nu} \in [0,1]$ is chosen so that $\sum_{\nu} \gamma^{\nu} = +\infty$ and $\sum_{\nu} (\gamma^{\nu})^2 < +\infty$.
- [Proximal weights]: The sequences $\{\tau_{D,i}^{\nu}\}$ and $\{\tau_{X,i}^{\nu}\}$ satisfy:

$$\tau_{X,i}^{\nu} = \max\left(\sigma_{\max}(\mathbf{U}_{(i)}^{\nu})^2, \epsilon_1\right), \quad \tau_{D,i}^{\nu} = \epsilon_2,$$

with $\epsilon_1, \ \epsilon_2 > 0.$

Then, we have:

(a) [convergence]: $\{(\overline{\mathbf{D}}^{\nu}, \mathbf{X}^{\nu})\}_{\nu}$ is bounded (where $\overline{\mathbf{D}}^{\nu} \triangleq \frac{1}{I} \sum_{i=1}^{I} \phi_{i}^{\nu} \mathbf{D}_{(i)}^{\nu}$) and all of its limit points are stationary solutions of Problem (P1);

(b) [consensus]: All $\{\mathbf{D}_{(i)}^{\nu}\}_{\nu}$ asymptotically reach consensus, i.e., $||\mathbf{D}_{(i)}^{\nu} - \overline{\mathbf{D}}^{\nu}|| \xrightarrow[n \to \infty]{} 0$, for all i = 1, 2, ..., I

Numerical Results

- Image restoration (denoising)
- e Biclustering of gene expressions

Distributed Image Restoration (denoising)

Setup:

- Corrupted $512 \times 512 \ {\rm image}$
- 255,000 patches of size 8×8
- Network of 150 agents
- $\bullet~$ Dictionary ${\bf D}$ of size 64×64
- Total of (≈) 16.4 million variables

Figure: original and noisy images

Distributed Image Restoration (denoising)

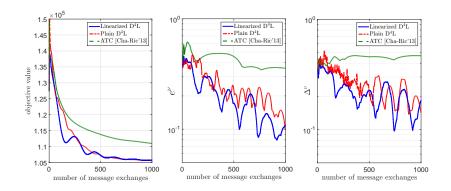
$$\min_{\substack{\mathbf{D}\in\mathcal{D}\\\{\mathbf{X}_i\}_i}} \sum_{i=1}^{I} \left\{ \underbrace{\frac{1}{2} \|\mathbf{Y}_i - \mathbf{D}\mathbf{X}_i\|^2}_{f_i(\mathbf{D},\mathbf{X}_i)} + \lambda \|\mathbf{X}_i\|_1 + \frac{\mu}{2} \|\mathbf{X}_i\|_F^2 \right\} \quad \begin{array}{l} \mathbf{Y}_i = \text{patches of noisy image} \\ \mathbf{D} = \text{dictionary} \\ \mathbf{X}_i = \text{sparse representation} \end{array}$$

Two instances of our algorithm:

- Plain D⁴L: using original function f_i in the convex subproblems;
 - $\mathbf{D}_{(i)}^{\nu}$ has closed form solution
 - $\mathbf{X}_{i}^{\nu+1}$ is solution of a LASSO
- Linearized D⁴L: using first order approximation of function f_i in the convex subproblems
 - $\mathbf{D}_{(i)}^{
 u}$ has closed form solution
 - $\mathbf{X}_{i}^{\nu+1}$ has closed form solution

Distributed Image Restoration (denoising) Merit functions

- Optimality merit: $\Delta^{\nu} = \text{distance from stationarity of } (\overline{\mathbf{D}}^{\nu}, \mathbf{X}^{\nu})$ [Fac-Scu-Sag'15]
- Consensus merit: $e^{\nu} = \text{consensus disagreement}$



Distributed Image Restoration (denoising)

Quality of the reconstruction (~ 200 message exchanges)

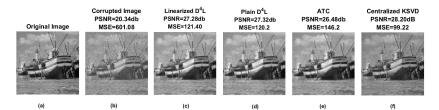


Figure: Comparison after 200 message exchanges

	Linearized D^4L	$\rm Plain \ D^4L$	ATC
200 message exchanges	$\begin{array}{l} \mathrm{PSNR}{=}27.28\mathrm{db} \\ \mathrm{MSE}{=}121.4 \end{array}$	$\begin{array}{l} \mathrm{PSNR}{=}27.32\mathrm{db} \\ \mathrm{MSE}{=}120.2 \end{array}$	$\begin{array}{l} \text{PSNR}{=}26.48\text{db} \\ \text{MSE}{=}146.2 \end{array}$
1000 message exchanges	$\begin{array}{l} \mathrm{PSNR}{=}27.53\mathrm{db} \\ \mathrm{MSE}{=}114.6 \end{array}$	$\begin{array}{l} \mathrm{PSNR}{=}27.65\mathrm{db} \\ \mathrm{MSE}{=}111.69 \end{array}$	PSNR=27.29db MSE=121.23

Figure: Comparison of reconstructed images after 200 and 1000 message exchanges

Distributed Image Restoration (denoising)

Computational time per iteration

	Linearized D^4L	$Plain\;D^4L$	ATC
Averaged Comp. Time (sec)	2.862	11.328	9.838

Table: Computation time per message passing

Figure: Reconstructed images after \sim 300 seconds

Conclusions

- We proposed a novel *decentralized* algorithmic framework for a fairly general class of Dictionary Learning problems
 - parallel and distributed updates
 - arbitrary digraphs
 - shared \mathbf{D} and private variables $\{\mathbf{X}_i\}_i$
- Preliminary numerical results show promising performance
- The framework is applicable to a variety of other learning problems (with general biconvex function)
 - supervised/discriminative learning
 - low-rank plus sparse decomposition
 - sparse SVD
 - Þ ...