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Applications: estimation, image denoising/debluring/inpainting, superresolution,
dimensionality reduction, bi-clustering, feature-extraction, classification,
prediction, ...
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Problem of Study

Distributed Dictionary Learning
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minimize Z§||Y,- — DX |2 + A X1 + gnxi“%

DeD, X&2(X)_,

£f,(D,X;) £g:(X;)

where p, A > 0 and D is a compact convex set.
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Problem of Study

Network Model

@ Dynamic network topology: Agents are embedded in a possibly time-varying
directed communication graph G[v]

» The vertices of G[v] correspond to the agents

» The set of directed edges may change over the
time

» N;[v]: set of agents that can send information to
agent ¢ at time v including node ¢

Assumptions on the network & agents’ knowledge

@ T-strongly connected digraphs: 37 € N such that the graph
([I]7 Uizo, 71 GlE+ 1/]) is connected for all v > 0.

@ Local information: each agent i knows its f; and g; but not Z#i fi

@ Local communications: agents can only receive information from their “neighbors”
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Ad-hoc schemes for distributed DL problem:|[Lia-Zha-Zen'14], [Che-Zai-Say'15],
[Wai-Cha-Sca'15], [Cha-Ric'13], [Kop-Gar-War-Stum-Rib'15,'16]
> Time invariant undirected graphs

> No proof of convergence to stationary solutions of DL problem

Distributed Nonconvex Multiagent Optimization: [Dilor-Scu'15]
> Can not handle both X;’s (private variables) and D (shared variables)

> Some technical conditions are not satisfied; e.g., V f; is NOT bounded or Lipschitz
continuous over the feasible set

Our contribution: extending [Dan-Scu-Fac, Asilomar’'16] to deal with
time-varying digraphs

Full picture: A. Daneshmand, Y. Sun, G. Scutari, F. Facchinei, B. M.
Sadler, “Decentralized Dictionary learning over Dynamic Digraphs”, J.
Mach. Learn. Res. (under review). Available online.



Algorithmic Design

Main Idea

I

1
Jug, VD20 £ 5 { SI¥i = D415 +gi(xi)},
{Xi}i =

N—_—— —_—

fi(D,X;)

Each agent i maintains a local copy D ;) of D, and controls X; :

(4 ] [local optimization]: optimizes D;) and X,; alternatingly by solving strongly convex
problems

Q [consensus update]: exchanges the local copies D(;) to force consensus
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[optimization of D ;)]: Given (D( )

7). each agent i updates Dy; setting X; = X} and
solving

D(i)€P
U(;y = D{;) +7" (D) — D)

TU 3 — 7 v
Dy, 2 argmln {fi (D(i),x;{) + %HD(i) -D{,yll7 + <H,, Dy — D<7y>>}

where 77, , > 0 and H aims to H = > VD Z),X”)

[optimization of X;]: Given (Uz’)7 ¥), each agent i updates X; setting D; = U(”i) and solving

'(Xi,)},

xVTl 2 ar%(min {MUE@),

7

with T;(,i > 0.



Algorithmic Design
Step 2: Broadcasting
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Algorithmic Design
Step 2: Broadcasting
I
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min U(D,X) = ; { 7Y = DXl +gi(xz~)}, UD,X) = fi(D,X;) + 3 /5D, %) + 37 9:(Xs)
{Xi}; A i =1
fi(D,X5)

Each agent 4! maintains a local copy D ;) of D, and controls X; :

(4 ] [local optimization]: optimizes D(;) and X, alternatingly by solving strongly convex
problems

© [consensus update]: Each agent i collects U from its neighbors and updates:

v+l _ v v
D= > wiuy,
JEN;[V]

Question: How to distibutively determine the weights (wj’])” matching an arbitrary
(time-varying) digraph that will guarantee eventual consensus?
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@ Doubly-stochasticity (W*1 =1 and 1"W" = 17) on digraphs [Cat-Say'10]
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Algorithmic Design

Step 2: Broadcasting
A L 1 2l
min U(D,X) = 37 { S I¥i = DX, |)? +gi(xi>}, UMD, X) = fi(D,Xy) + 3 (D, X)) + 37 9:(X)
{Xi}s e J#i i=1
fi (D,X4)

Each agent i maintains a local copy D(;y of D, and controls X; :

(4 ] [local optimization]: optimizes D(;y and X; alternatingly by solving strongly convex

problems

Q [consensus update]:  collects U, from its neighbors and updates:

1 -
$ith= > alef

v+1l __
D(i) - ¢1{+1
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I 1 I
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fi (D,X5)
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Question: How to choose f[,l;to convergence while using ONLY Jocal information?
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Local update of I:I:
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Algorithmic Design

Local update of ﬁ:

IO — 3 V45D, X))
VE

@ Distributed Tracking of Gradient Averages (similar to [DiLor-Scu'15]):

Svt+1 v = +1 +1 v v
ey = 4>”1+1( > w;j¢;@;’+(vai(D’({i) XY )—va,i(Dgi),x;)>>
7 4 N.[,,]
JEN;
= 1 = 1
vttt = r.evt 7vai(D;’§1,x;.’+1)

with ©9 = Vfi(D[()i), x9).



D*L alg.: Decentralized Dictionary Learning over Dynamic Digraphs

Data: {"}, >0, ¢? =1, DY, € D, X} =0, e = Vp £i(DY;y, X9) for all 4's; Set v = 0;
(S.1): If (DY), xY) satisfies a suitable termination criterion, STOP;

S.2): [Optimization step]: Each agent ¢ updates D(;y and X; locally:
(%)

DY,y = remn fi (Deay, X¥) + (f1}, D) - DY) ) + 24D () - DYy I3
(i)E’D

Uy = DGt — D)

xytt = argmin - £,(U;), X4) + 9i(Xi) + XX — XY (|2

(S.3): [Consensus step|: Each agent 7 collects from its neighbors and updates

eyt = 3> w4
JEN; ]
v+1 _ 1 ~ v vyl
Do = o D @ o0
i JEN;[V]
v+l _ 1 o S” +1 vl
9; = T ( %j[ ]w5j¢;ej 3 (vamD(”i) X = VDfi(D(”i,xr)))
2 JEN; v
=3 1 = 1
ot = 1.8yt - VDfi(D(V;)rla xyth

(S4): v+ v+1andgoto (S.1).




Theorem: D*L Convergence

Given the optimization problem (P) in the setting above, suppose that
@ [Mixing Weights]: The weights W" £ (wY;)f ;—, are chosen so that, for all v, it
holds

w:{ >0€(0,1] fjENDL  jrggy g7

e =0 otherwise.
@ [Step-size]: The step-size v € [0,1] is chosen so that 3 ~” = 400 and
>, (v)? < +oo.
@ [Proximal weights]: The sequences {75 ;} and {7% ;} satisfy:
TxX ; = max (O‘max(UZIi))2, 61), Thi = €2,
with €1, €2 > 0.
Then, we have:

(a) [convergence]:{(D",X")}, is bounded (where D" £ 1 37 | ¢¢D{;)) and all of its
limit points are stationary solutions of Problem (P1);

b) [consensus]: All {D¥,}, asymptotically reach consensus, i.e., [|[D%, —D"|| — 0,
(@) Yy y (@) oo
foralli=1,2,...,1




Numerical Results

@ Image restoration (denoising)

@ Biclustering of gene expressions



Distributed Image Restoration (denoising)

Setup:
@ Corrupted 512 x 512 image
@ 255,000 patches of size 8 x 8
@ Network of 150 agents
@ Dictionary D of size 64 x 64

e Total of (=) 16.4 million
variables Figure: original and noisy images
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Distributed Image Restoration (denoising)

I
1
min { iHYZ - DX,|? +/\||Xi||1+g||Xi||%} Y; = patches of noisy image

{]Dxel}Dl =1 ——— D = dictionary
fi(D,X;) X,; = sparse representation

Two instances of our algorithm:

@ Plain D*L: using original function f; in the convex subproblems;
> D(”i) has closed form solution
> X;’+1 is solution of a LASSO

@ Linearized D*L: using first order approximation of function f; in the convex subproblems
> D,(/i) has closed form solution

> X;"H has closed form solution



Distributed Image Restoration (denoising)

Merit functions

@ Optimality merit: AY = distance from stationarity of (ﬁ”,X") [Fac-Scu-Sag'15]

@ Consensus merit: e” = consensus disagreement

x10°
10°
g
=
g
© N
& <
£
S
10
o 500 1000 0 500 1000 0 500 1000

number of message exchanges number of message exchanges number of message exchanges



Distributed Image Restoration (denoising)

Quality of the reconstruction (~ 200 message exchanges)

Corrupted Image Linearized D*L Plain D*L ATC Centralized KSVD
PSNR=20.34db PSNR=27.28db PSNR=27.32db PSNR=26.48db PSNR=28.20dB
Original Image MSE=601.08

MS|

40 MSE=120.2 MSE=146.2 MSE=99.22

(@ (b) () (d) (e) ®

Figure: Comparison after 200 message exchanges

Linearized DL Plain DL ATC

PSNR=27.28dh PSNR=27.32db PSNR=26.48dh
200 message exchanges

MSE=121.4 MSE=120.2 MSE=146.2
1000 message oxchanges PSNR=27.53dh PSNR=27.65db PSNR=27.29db
s s MSE=114.6 MSE=111.69 MSE=121.23

Figure: Comparison of reconstructed images after 200 and 1000 message exchanges
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Distributed Image Restoration (denoising)

Computational time per iteration
Linearized D*L  Plain D*L  ATC

Averaged Comp. 2.862 11.328 9.838
Time (sec)

Table: Computation time per message passing

Linearized DL Plain DL ATC
PSNR=27.2886db PSNR=255253db PSNR=24.4582db
MSE=121.4007 MSE=182.2011 MSE=232.9464

Figure: Reconstructed images after ~300 seconds
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Conclusions

@ We proposed a novel decentralized algorithmic framework for a fairly general
class of Dictionary Learning problems

» parallel and distributed updates
» arbitrary digraphs
» shared D and private variables {X;},

@ Preliminary numerical results show promising performance

@ The framework is applicable to a variety of other learning problems (with
general biconvex function)

» supervised/discriminative learning
» low-rank plus sparse decomposition
» sparse SVD

> .



