
1

D4L: Decentralized Dictionary Learning over Dynamic
Digraphs

Amir Daneshmand†, Ying Sun†, Gesualdo Scutari†

Francisco Facchinei‡

†Purdue University,

‡ University of Rome La Sapienza

The 42nd IEEE International Conference on Acoustics, Speech and Signal Processing

March 5-9, 2017

2

Outline

Motivation and problem formulation

Main challenges and literature overview

Algorithmic framework (bottom-up approach)

Numerical results

Conclusions

3

Problem of Study
Dictionary Learning

minimize
D∈D,X,(Xi)

I
i=1

I∑
i=1

1

2
‖Yi −DXi‖2F︸ ︷︷ ︸

,fi(D,Xi)

+ λ‖Xi‖1 +
µ

2
‖Xi‖2F︸ ︷︷ ︸

,gi(Xi)

where µ, λ > 0 and D is a compact convex set

Applications: estimation, image denoising/debluring/inpainting, superresolution,

dimensionality reduction, bi-clustering, feature-extraction, classification,

prediction, ...

4

Problem of Study
Dictionary Learning

minimize
D∈D,X,(Xi)

I
i=1

I∑
i=1

1

2
‖Yi −DXi‖2F︸ ︷︷ ︸

,fi(D,Xi)

+ λ‖Xi‖1 +
µ

2
‖Xi‖2F︸ ︷︷ ︸

,gi(Xi)

where µ, λ > 0 and D is a compact convex set

Applications: estimation, image denoising/debluring/inpainting, superresolution,

dimensionality reduction, bi-clustering, feature-extraction, classification,

prediction, ...

5

Problem of Study

minimize
D∈D,X,(Xi)

I
i=1

I∑
i=1

1

2
‖Yi −DXi‖2F︸ ︷︷ ︸

,fi(D,Xi)

+ λ‖Xi‖1 +
µ

2
‖Xi‖2F︸ ︷︷ ︸

,gi(Xi)

where µ, λ > 0 and D is a compact convex set

≃

Yi

Goal: designing a distributed algorithm over a network

6

Problem of Study

minimize
D∈D,X,(Xi)

I
i=1

I∑
i=1

1

2
‖Yi −DXi‖2F︸ ︷︷ ︸

,fi(D,Xi)

+ λ‖Xi‖1 +
µ

2
‖Xi‖2F︸ ︷︷ ︸

,gi(Xi)

where µ, λ > 0 and D is a compact convex set.

Goal: designing a distributed algorithm over a network

7

Problem of Study
Distributed Dictionary Learning

minimize
D∈D,X,(Xi)

I
i=1

I∑
i=1

1

2
‖Yi −DXi‖2F︸ ︷︷ ︸

,fi(D,Xi)

+ λ‖Xi‖1 +
µ

2
‖Xi‖2F︸ ︷︷ ︸

,gi(Xi)

where µ, λ > 0 and D is a compact convex set.

Goal: designing a distributed algorithm over a network

8

Problem of Study
Network Model

Dynamic network topology: Agents are embedded in a possibly time-varying

directed communication graph G[ν]
I The vertices of G[ν] correspond to the agents

I The set of directed edges may change over the
time

I Ni[ν]: set of agents that can send information to
agent i at time ν including node i

Assumptions on the network & agents’ knowledge

T -strongly connected digraphs: ∃T ∈ N+ such that the graph(
[I],

⋃
t=0,...,T−1 G[t+ ν]

)
is connected for all ν ≥ 0.

Local information: each agent i knows its fi and gi but not
∑
j 6=i fj

Local communications: agents can only receive information from their “neighbors”

8

Problem of Study
Network Model

Dynamic network topology: Agents are embedded in a possibly time-varying

directed communication graph G[ν]
I The vertices of G[ν] correspond to the agents

I The set of directed edges may change over the
time

I Ni[ν]: set of agents that can send information to
agent i at time ν including node i

Assumptions on the network & agents’ knowledge

T -strongly connected digraphs: ∃T ∈ N+ such that the graph(
[I],

⋃
t=0,...,T−1 G[t+ ν]

)
is connected for all ν ≥ 0.

Local information: each agent i knows its fi and gi but not
∑
j 6=i fj

Local communications: agents can only receive information from their “neighbors”

8

Problem of Study
Network Model

Dynamic network topology: Agents are embedded in a possibly time-varying

directed communication graph G[ν]
I The vertices of G[ν] correspond to the agents

I The set of directed edges may change over the
time

I Ni[ν]: set of agents that can send information to
agent i at time ν including node i

Assumptions on the network & agents’ knowledge

T -strongly connected digraphs: ∃T ∈ N+ such that the graph(
[I],

⋃
t=0,...,T−1 G[t+ ν]

)
is connected for all ν ≥ 0.

Local information: each agent i knows its fi and gi but not
∑
j 6=i fj

Local communications: agents can only receive information from their “neighbors”

8

Problem of Study
Network Model

Dynamic network topology: Agents are embedded in a possibly time-varying

directed communication graph G[ν]
I The vertices of G[ν] correspond to the agents

I The set of directed edges may change over the
time

I Ni[ν]: set of agents that can send information to
agent i at time ν including node i

Assumptions on the network & agents’ knowledge

T -strongly connected digraphs: ∃T ∈ N+ such that the graph(
[I],

⋃
t=0,...,T−1 G[t+ ν]

)
is connected for all ν ≥ 0.

Local information: each agent i knows its fi and gi but not
∑
j 6=i fj

Local communications: agents can only receive information from their “neighbors”

9

Literature Review and Challenges
Distributed Dictionary Learning

Ad-hoc schemes for distributed DL problem:[Lia-Zha-Zen’14], [Che-Zai-Say’15],

[Wai-Cha-Sca’15], [Cha-Ric’13], [Kop-Gar-War-Stum-Rib’15,’16]

I Time invariant undirected graphs

I No proof of convergence to stationary solutions of DL problem

Distributed Nonconvex Multiagent Optimization: [DiLor-Scu’15]

I Can not handle both Xi’s (private variables) and D (shared variables)

I Some technical conditions are not satisfied; e.g., ∇fi is NOT bounded or Lipschitz

continuous over the feasible set

Our contribution: extending [Dan-Scu-Fac, Asilomar’16] to deal with

time-varying digraphs

Full picture: A. Daneshmand, Y. Sun, G. Scutari, F. Facchinei, B. M.

Sadler, “Decentralized Dictionary learning over Dynamic Digraphs”, J.

Mach. Learn. Res. (under review). Available online.

9

Literature Review and Challenges
Distributed Dictionary Learning

Ad-hoc schemes for distributed DL problem:[Lia-Zha-Zen’14], [Che-Zai-Say’15],

[Wai-Cha-Sca’15], [Cha-Ric’13], [Kop-Gar-War-Stum-Rib’15,’16]

I Time invariant undirected graphs

I No proof of convergence to stationary solutions of DL problem

Distributed Nonconvex Multiagent Optimization: [DiLor-Scu’15]

I Can not handle both Xi’s (private variables) and D (shared variables)

I Some technical conditions are not satisfied; e.g., ∇fi is NOT bounded or Lipschitz

continuous over the feasible set

Our contribution: extending [Dan-Scu-Fac, Asilomar’16] to deal with

time-varying digraphs

Full picture: A. Daneshmand, Y. Sun, G. Scutari, F. Facchinei, B. M.

Sadler, “Decentralized Dictionary learning over Dynamic Digraphs”, J.

Mach. Learn. Res. (under review). Available online.

9

Literature Review and Challenges
Distributed Dictionary Learning

Ad-hoc schemes for distributed DL problem:[Lia-Zha-Zen’14], [Che-Zai-Say’15],

[Wai-Cha-Sca’15], [Cha-Ric’13], [Kop-Gar-War-Stum-Rib’15,’16]

I Time invariant undirected graphs

I No proof of convergence to stationary solutions of DL problem

Distributed Nonconvex Multiagent Optimization: [DiLor-Scu’15]

I Can not handle both Xi’s (private variables) and D (shared variables)

I Some technical conditions are not satisfied; e.g., ∇fi is NOT bounded or Lipschitz

continuous over the feasible set

Our contribution: extending [Dan-Scu-Fac, Asilomar’16] to deal with

time-varying digraphs

Full picture: A. Daneshmand, Y. Sun, G. Scutari, F. Facchinei, B. M.

Sadler, “Decentralized Dictionary learning over Dynamic Digraphs”, J.

Mach. Learn. Res. (under review). Available online.

9

Literature Review and Challenges
Distributed Dictionary Learning

Ad-hoc schemes for distributed DL problem:[Lia-Zha-Zen’14], [Che-Zai-Say’15],

[Wai-Cha-Sca’15], [Cha-Ric’13], [Kop-Gar-War-Stum-Rib’15,’16]

I Time invariant undirected graphs

I No proof of convergence to stationary solutions of DL problem

Distributed Nonconvex Multiagent Optimization: [DiLor-Scu’15]

I Can not handle both Xi’s (private variables) and D (shared variables)

I Some technical conditions are not satisfied; e.g., ∇fi is NOT bounded or Lipschitz

continuous over the feasible set

Our contribution: extending [Dan-Scu-Fac, Asilomar’16] to deal with

time-varying digraphs

Full picture: A. Daneshmand, Y. Sun, G. Scutari, F. Facchinei, B. M.

Sadler, “Decentralized Dictionary learning over Dynamic Digraphs”, J.

Mach. Learn. Res. (under review). Available online.

10

Algorithmic Design
Main Idea

min
D∈D
{Xi}i

U(D,X) ,
I∑
i=1

{
1

2
‖Yi −DXi‖

2
F︸ ︷︷ ︸

fi(D,Xi)

+gi(Xi)

}
, U(D,X) = fi(D,Xi) +

∑
j 6=i

fj(D,Xj) +
I∑
i=1

gi(Xi)

Each agent i: maintains a local copy D(i) of D, and controls Xi :

1 [local optimization]: optimizes D(i) and Xi alternatingly by solving strongly convex

problems

2 [consensus update]: exchanges the local copies D(i) to force consensus

11

Algorithmic Design
Step 1: Local Optimization

min
D∈D
{Xi}i

U(D,X) ,
I∑
i=1

{
1

2
‖Yi −DXi‖

2
F︸ ︷︷ ︸

fi(D,Xi)

+gi(Xi)

}
, U(D,X) = fi(D,Xi) +

∑
j 6=i

fj(D,Xj) +
I∑
i=1

gi(Xi)

[optimization of D(i)]: Given (Dν
(i)
,Xν

i), each agent i updates D(i) setting Xi = Xν
i and

solving

D̃
ν
(i), argmin

D(i)∈D

{
fi

(
D(i),X

ν
i

)
+
τνD,i

2
‖D(i) −D

ν
(i)‖

2
F +

〈
Π̃
ν
i ,D(i) −D

ν
(i)

〉}

U
ν
(i) = D

ν
(i) + γ

ν
(D̃
ν
(i) −D

ν
(i))

where τνD,i > 0 and Π̃
ν
i aims to Π̃

ν
i →

∑
j 6=i∇fj(Dν

(i)
,Xν

j).

[optimization of Xi]: Given (Uν
(i)
,Xν

i), each agent i updates Xi setting Di = Uν
(i)

and solving

X
ν+1
i , argmin

Xi

{
fi(U

ν
(i),Xi) +

τνX,i

2
‖Xi −X

ν
i ‖

2
F + gi(Xi)

}
,

with τνX,i > 0.

11

Algorithmic Design
Step 1: Local Optimization

min
D∈D
{Xi}i

U(D,X) ,
I∑
i=1

{
1

2
‖Yi −DXi‖

2
F︸ ︷︷ ︸

fi(D,Xi)

+gi(Xi)

}
, U(D,X) = fi(D,Xi) +

∑
j 6=i

fj(D,Xj) +
I∑
i=1

gi(Xi)

[optimization of D(i)]: Given (Dν
(i)
,Xν

i), each agent i updates D(i) setting Xi = Xν
i and

solving

D̃
ν
(i), argmin

D(i)∈D

{
fi

(
D(i),X

ν
i

)
+
τνD,i

2
‖D(i) −D

ν
(i)‖

2
F +

〈
Π̃
ν
i ,D(i) −D

ν
(i)

〉}

U
ν
(i) = D

ν
(i) + γ

ν
(D̃
ν
(i) −D

ν
(i))

where τνD,i > 0 and Π̃
ν
i aims to Π̃

ν
i →

∑
j 6=i∇fj(Dν

(i)
,Xν

j).

[optimization of Xi]: Given (Uν
(i)
,Xν

i), each agent i updates Xi setting Di = Uν
(i)

and solving

X
ν+1
i , argmin

Xi

{
fi(U

ν
(i),Xi) +

τνX,i

2
‖Xi −X

ν
i ‖

2
F + gi(Xi)

}
,

with τνX,i > 0.

11

Algorithmic Design
Step 1: Local Optimization

min
D∈D
{Xi}i

U(D,X) ,
I∑
i=1

{
1

2
‖Yi −DXi‖

2
F︸ ︷︷ ︸

fi(D,Xi)

+gi(Xi)

}
, U(D,X) = fi(D,Xi) +

∑
j 6=i

fj(D,Xj) +
I∑
i=1

gi(Xi)

[optimization of D(i)]: Given (Dν
(i)
,Xν

i), each agent i updates D(i) setting Xi = Xν
i and

solving

D̃
ν
(i), argmin

D(i)∈D

{
fi

(
D(i),X

ν
i

)
+
τνD,i

2
‖D(i) −D

ν
(i)‖

2
F +

〈
Π̃
ν
i ,D(i) −D

ν
(i)

〉}

U
ν
(i) = D

ν
(i) + γ

ν
(D̃
ν
(i) −D

ν
(i))

where τνD,i > 0 and Π̃
ν
i aims to Π̃

ν
i →

∑
j 6=i∇fj(Dν

(i)
,Xν

j).

[optimization of Xi]: Given (Uν
(i)
,Xν

i), each agent i updates Xi setting Di = Uν
(i)

and solving

X
ν+1
i , argmin

Xi

{
fi(U

ν
(i),Xi) +

τνX,i

2
‖Xi −X

ν
i ‖

2
F + gi(Xi)

}
,

with τνX,i > 0.

12

Algorithmic Design
Step 2: Broadcasting

min
D∈D
{Xi}i

U(D,X) ,
I∑
i=1

{
1

2
‖Yi −DXi‖

2
F︸ ︷︷ ︸

fi(D,Xi)

+gi(Xi)

}
, U(D,X) = fi(D,Xi) +

∑
j 6=i

fj(D,Xj) +
I∑
i=1

gi(Xi)

Each agent i: maintains a local copy D(i) of D, and controls Xi :

1 [local optimization]: optimizes D(i) and Xi alternatingly by solving strongly convex

problems

2 [consensus update]: Each agent i collects U(j) from its neighbors and updates:

Dν+1
(i)

=
∑

j∈Ni[ν]
wνijU

ν
(j)

Question: How to distibutively determine the weights (wνij)i,j matching an arbitrary

(time-varying) digraph that will guarantee eventual consensus?

12

Algorithmic Design
Step 2: Broadcasting

min
D∈D
{Xi}i

U(D,X) ,
I∑
i=1

{
1

2
‖Yi −DXi‖

2
F︸ ︷︷ ︸

fi(D,Xi)

+gi(Xi)

}
, U(D,X) = fi(D,Xi) +

∑
j 6=i

fj(D,Xj) +
I∑
i=1

gi(Xi)

Each agent i: maintains a local copy D(i) of D, and controls Xi :

1 [local optimization]: optimizes D(i) and Xi alternatingly by solving strongly convex

problems

2 [consensus update]: Each agent i collects U(j) from its neighbors and updates:

Dν+1
(i)

=
∑

j∈Ni[ν]
wνijU

ν
(j)

Question: How to distibutively determine the weights (wνij)i,j matching an arbitrary

(time-varying) digraph that will guarantee eventual consensus?

12

Algorithmic Design
Step 2: Broadcasting

min
D∈D
{Xi}i

U(D,X) ,
I∑
i=1

{
1

2
‖Yi −DXi‖

2
F︸ ︷︷ ︸

fi(D,Xi)

+gi(Xi)

}
, U(D,X) = fi(D,Xi) +

∑
j 6=i

fj(D,Xj) +
I∑
i=1

gi(Xi)

Each agent i: maintains a local copy D(i) of D, and controls Xi :

1 [local optimization]: optimizes D(i) and Xi alternatingly by solving strongly convex

problems

2 [consensus update]: Each agent i collects U(j) from its neighbors and updates:

Dν+1
(i)

=
∑

j∈Ni[ν]
wνijU

ν
(j)

Question: How to distibutively determine the weights (wνij)i,j matching an arbitrary

(time-varying) digraph that will guarantee eventual consensus?

13

Algorithmic Design
Consensus Weights Wν ,

(
wνij
)I
i,j=1

Doubly-stochasticity (Wν1 = 1 and 1TWν = 1T) on digraphs [Cat-Say’10]

I not all digraphs admit a doubly-stochastic matrix
I when exists, constructing one calls for additional (de-)centralized algorithms

Our approach: Introducing a new consensus protocol requiring only column

stochasticity

Special case for W̃: push-sum weights

13

Algorithmic Design
Consensus Weights Wν ,

(
wνij
)I
i,j=1

Doubly-stochasticity (Wν1 = 1 and 1TWν = 1T) on digraphs [Cat-Say’10]

I not all digraphs admit a doubly-stochastic matrix
I when exists, constructing one calls for additional (de-)centralized algorithms

Our approach: Introducing a new consensus protocol requiring only column

stochasticity

Special case for W̃: push-sum weights

14

Algorithmic Design
Consensus Weights Wν ,

(
wνij
)I
i,j=1

Doubly-stochasticity (Wν1 = 1 and 1TWν = 1T) on digraphs [Cat-Say’10]

I not all digraphs admit a doubly-stochastic matrix
I when exists, constructing one calls for additional (de-)centralized algorithms

Our approach: Introducing a new consensus protocol requiring only column

stochasticity

Special case for W̃: push-sum weights

15

Algorithmic Design
Consensus Weights Wν ,

(
wνij
)I
i,j=1

Doubly-stochasticity (Wν1 = 1 and 1TWν = 1T) on digraphs [Cat-Say’10]

I not all digraphs admit a doubly-stochastic matrix
I when exists, constructing one calls for additional (de-)centralized algorithms

Our approach: Introducing a new consensus protocol requiring only column

stochasticity

Special case for W̃: push-sum weights

16

Algorithmic Design
Consensus Weights Wν ,

(
wνij
)I
i,j=1

Doubly-stochasticity (Wν1 = 1 and 1TWν = 1T) on digraphs [Cat-Say’10]

I not all digraphs admit a doubly-stochastic matrix
I when exists, constructing one calls for additional (de-)centralized algorithms

Our approach: Introducing a new consensus protocol requiring only column

stochasticity

Special case for W̃: push-sum weights

17

Algorithmic Design
Step 2: Broadcasting

min
D∈D
{Xi}i

U(D,X) ,
I∑
i=1

{
1

2
‖Yi −DXi‖

2

︸ ︷︷ ︸
fi(D,Xi)

+gi(Xi)

}
, U(D,X) = fi(D,Xi) +

∑
j 6=i

fj(D,Xj) +
I∑
i=1

gi(Xi)

Each agent i: maintains a local copy D(i) of D, and controls Xi :

1 [local optimization]: optimizes D(i) and Xi alternatingly by solving strongly convex

problems

2 [consensus update]: collects U(j) from its neighbors and updates:

φ
ν+1
i =

∑
j∈Ni[ν]

w̃
ν
ij φ

ν
j

D
ν+1
(i)

=
1

φν+1
i

∑
j∈Ni[ν]

w̃
ν
ij φ

ν
jU

ν
(j)

18

Algorithmic Design

min
D∈D
{Xi}i

U(D,X) ,
I∑
i=1

{
1

2
‖Yi −DXi‖

2

︸ ︷︷ ︸
fi(D,Xi)

+gi(Xi)

}
, U(D,X) = fi(D,Xi) +

∑
j 6=i

fj(D,Xj) +
I∑
i=1

gi(Xi)

[optimization of D(i)]: Each agent i updates D(i) setting Xi = Xν
i and solving

D̃
ν
(i), argmin

D(i)∈D

{
fi

(
D(i),X

ν
i

)
+
τνD,i

2
‖D(i) −D

ν
(i)‖

2
F +

〈
Π̃
ν
i ,D(i) −D

ν
(i)

〉}

U
ν
(i) = D

ν
(i) + γ

ν
(D̃
ν
(i) −D

ν
(i))

where τνD,i > 0 and Π̃
ν
i aims to

Π̃
ν

i −→
∑
j 6=i
∇fj(D

ν
(i),X

ν
j)←−

∑
j∈N in

i
[ν]

∇fj(D
ν
(j),X

ν
j)

Question: How to choose Π̃
ν
i to convergence while using ONLY local information?

19

Algorithmic Design

min
D∈D
{Xi}i

U(D,X) ,
I∑
i=1

{
1

2
‖Yi −DXi‖

2

︸ ︷︷ ︸
fi(D,Xi)

+gi(Xi)

}
, U(D,X) = fi(D,Xi) +

∑
j 6=i

fj(D,Xj) +
I∑
i=1

gi(Xi)

[optimization of D(i)]: Each agent i updates D(i) setting Xi = Xν
i and solving

D̃
ν
(i), argmin

D(i)∈D

{
fi

(
D(i),X

ν
i

)
+
τνD,i

2
‖D(i) −D

ν
(i)‖

2
F +

〈
Π̃
ν
i ,D(i) −D

ν
(i)

〉}

U
ν
(i) = D

ν
(i) + γ

ν
(D̃
ν
(i) −D

ν
(i))

where τνD,i > 0 and Π̃
ν
i aims to

Π̃
ν

i −→
�������∑
j 6=i
∇fj(D

ν
(i),X

ν
j)←−

∑
j∈Ni[ν]

∇fj(D
ν
(j),X

ν
j)

Question: How to choose Π̃
ν
i to convergence while using ONLY local information?

20

Algorithmic Design
Local update of Π̃

ν

i

Π̃
ν

i −→
∑
j 6=i
∇fj(D

ν
(i),X

ν
j)

Distributed Tracking of Gradient Averages (similar to [DiLor-Scu’15]):

Θ̃
ν+1
i = 1

φ
ν+1
i

 ∑
j∈Ni[ν]

w̃
ν
ijφ

ν
j Θ̃

ν
j +

(
∇Dfi(D

ν+1
(i)

,X
ν+1
i)−∇Dfi(D

ν
(i),X

ν
i)

)

Π̃
ν+1
i = I · Θ̃ν+1

i −∇Dfi(D
ν+1
(i)

,Xν+1
i)

with Θ0
i = ∇fi(D0

(i),X
0
i).

20

Algorithmic Design
Local update of Π̃

ν

i

Π̃
ν

i −→
∑
j 6=i
∇fj(D

ν
(i),X

ν
j)

Distributed Tracking of Gradient Averages (similar to [DiLor-Scu’15]):

Θ̃
ν+1
i = 1

φ
ν+1
i

 ∑
j∈Ni[ν]

w̃
ν
ijφ

ν
j Θ̃

ν
j +

(
∇Dfi(D

ν+1
(i)

,X
ν+1
i)−∇Dfi(D

ν
(i),X

ν
i)

)

Π̃
ν+1
i = I · Θ̃ν+1

i −∇Dfi(D
ν+1
(i)

,Xν+1
i)

with Θ0
i = ∇fi(D0

(i),X
0
i).

21

D4L alg.: Decentralized Dictionary Learning over Dynamic Digraphs

Data: {γν}ν > 0, φ0
i = 1, D0

(i) ∈ D, X0
i = 0, Θ̃

0
i = ∇Dfi(D0

(i),X
0
i) for all i’s; Set ν = 0;

(S.1): If (Dν(i),X
ν
i) satisfies a suitable termination criterion, STOP;

(S.2): [Optimization step]: Each agent i updates D(i) and Xi locally:

D̃ν(i) = argmin
D(i)∈D

fi

(
D(i),X

ν
i

)
+
〈
Π̃
ν
i ,D(i) −Dν(i)

〉
+
τνD,i

2
‖D(i) −Dν(i)‖

2
F

Uν(i) = Dν(i) + γν(D̃ν(i) −Dν(i))

Xν+1
i = argmin

Xi

fi(U
ν
(i),Xi) + gi(Xi) +

τνX,i
2
‖Xi −Xνi ‖

2
F

(S.3): [Consensus step]: Each agent i collects from its neighbors and updates

φν+1
i =

∑
j∈Ni[ν]

w̃
ν
ij φ

ν
j

Dν+1
(i)

= 1

φ
ν+1
i

∑
j∈Ni[ν]

w̃
ν
ij φ

ν
jU

ν
(j)

Θ̃
ν+1
i = 1

φ
ν+1
i

 ∑
j∈Ni[ν]

w̃
ν
ijφ

ν
j Θ̃

ν
j +

(
∇Dfi(D

ν+1
(i)

,X
ν+1
i)−∇Dfi(D

ν
(i),X

ν
i)

)
Π̃
ν+1
i = I · Θ̃ν+1

i −∇Dfi(D
ν+1
(i)

,Xν+1
i)

(S.4): ν ← ν + 1 and go to (S.1).

22

Theorem: D4L Convergence

Given the optimization problem (P) in the setting above, suppose that

[Mixing Weights]: The weights W̃ν , (w̃νij)
I
i,j=1 are chosen so that, for all ν, it

holds

w̃νij =

{
> θ ∈ (0, 1] if j ∈ Ni[ν];
= 0 otherwise.

, 1TW̃ν = 1T

[Step-size]: The step-size γν ∈ [0, 1] is chosen so that
∑
ν γ

ν = +∞ and∑
ν (γ

ν)2 < +∞.

[Proximal weights]: The sequences {τνD,i} and {τνX,i} satisfy:

τνX,i = max
(
σmax(U

ν
(i))

2, ε1
)
, τνD,i = ε2,

with ε1, ε2 > 0.

Then, we have:

(a) [convergence]:{(Dν
,Xν)}ν is bounded (where D

ν
, 1

I

∑I
i=1 φ

ν
iD

ν
(i)) and all of its

limit points are stationary solutions of Problem (P1);

(b) [consensus]: All {Dν
(i)}ν asymptotically reach consensus, i.e., ||Dν

(i) −D
ν || −→

n→∞
0,

for all i = 1, 2, . . . , I

23

Numerical Results

1 Image restoration (denoising)

2 Biclustering of gene expressions

24

Distributed Image Restoration (denoising)

Setup:

Corrupted 512× 512 image

255,000 patches of size 8× 8

Network of 150 agents

Dictionary D of size 64× 64

Total of (≈) 16.4 million
variables Figure: original and noisy images

25

Distributed Image Restoration (denoising)

min
D∈D
{Xi}i

I∑
i=1

{
1

2
‖Yi −DXi‖2︸ ︷︷ ︸
fi(D,Xi)

+λ‖Xi‖1+
µ

2
‖Xi‖2F

}
Yi = patches of noisy image
D = dictionary
Xi = sparse representation

Two instances of our algorithm:

Plain D4L: using original function fi in the convex subproblems;

I Dν
(i)

has closed form solution

I Xν+1
i is solution of a LASSO

Linearized D4L: using first order approximation of function fi in the convex subproblems

I Dν
(i)

has closed form solution

I Xν+1
i has closed form solution

26

Distributed Image Restoration (denoising)
Merit functions

Optimality merit: ∆ν = distance from stationarity of (D
ν
,Xν) [Fac-Scu-Sag’15]

Consensus merit: eν = consensus disagreement

number of message exchanges
0 500 1000

o
b
je
ct
iv
e
va
lu
e

×105

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5
Linearized D4L
Plain D4L
ATC [Cha-Ric’13]

number of message exchanges
0 500 1000

e
ν

10-1

100

Linearized D4L
Plain D4L
ATC [Cha-Ric’13]

number of message exchanges
0 500 1000

∆
ν

10-1

100

Linearized D4L
Plain D4L
ATC [Cha-Ric’13]

27

Distributed Image Restoration (denoising)
Quality of the reconstruction (∼ 200 message exchanges)

Figure: Comparison after 200 message exchanges

Figure: Comparison of reconstructed images after 200 and 1000 message exchanges

28

Distributed Image Restoration (denoising)
Computational time per iteration

Linearized D4L Plain D4L ATC

Averaged Comp.
Time (sec)

2.862 11.328 9.838

Table: Computation time per message passing

Linearized D4L
PSNR=27.2886db

MSE=121.4007

Plain D4L
PSNR=25.5253db

MSE=182.2011

ATC
PSNR=24.4582db

MSE=232.9464

Figure: Reconstructed images after ∼300 seconds

29

Conclusions

We proposed a novel decentralized algorithmic framework for a fairly general
class of Dictionary Learning problems

I parallel and distributed updates
I arbitrary digraphs
I shared D and private variables {Xi}i

Preliminary numerical results show promising performance

The framework is applicable to a variety of other learning problems (with
general biconvex function)

I supervised/discriminative learning
I low-rank plus sparse decomposition
I sparse SVD
I ...

