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Introduction

» Goal: Under-determined convolutive blind source separation
» Objective: Improve the accuracy of mixing matrix estimation
» Existing algorithms: Directional clustering and sparse coding

» Challenges: Complex-valued mixing matrix and non-convexity

Background

» Under-determined complex-valued instantaneous mixing model:
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» Assumption 1: The sources are highly sparse so that the
observed data concentrates around the directions specified by
the columns of A. E.g.,
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There are infinite number of unit vectors that share the same
direction in complex vector space. So the direction is measured
using phase-invariant cosine distance:
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D4(x[k],a;) =1 — cos?* Oy (x[k],a;) =1

» Assumption 2: The sources are zero-mean and unit-variance.
Thus, A becomes semi-unitary when Xx[k] i1s whitened, I.e.,

AAR =1

In this case, for any x[k], we always have

>; lajll; cos® O (x[k], a;) = 1

Since a generally has different norm in under-determined case,
sparsity penalty such as L1/L2 norm ratio is suboptimal for pre-
whitened directional data.
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Issues related to existing approaches

» Sparse filtering uses an unsuitable sparsity enforcer.
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» K-hyperlines is only suitable for perfectly directional data.
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» “Soft” extensions of K-hyperlines are computationally expensive.

» EXxisting methods do not exploit the prior information of A.

Proposed algorithm

» Proposed method: Minimize the expected “soft” minimum of phase-
Invariant cosine distance subject to semi-unitary constraint:

min 3 J(A; 1), st. AAH =1,,.

where ( 1y
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» Difficulty: Constrained non-convex optimization problem.

» Solution: Reparametrize semi-unitary constrained problems into
unconstrained ones in Euclidean space that can be solved by any
off-the-shelf tools such as L-BFGS, Nesterov’'s accelerated
gradient, SGD, momentum, ADAM, etc.
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» A is the nearest semi-unitary matrix of B, thus always feasible
» The gradient w.r.t. B* is parallel to the tangent space at A since

all matrix belonged to normal space at A yield the same cost
B~ )

e

Fig.: Proposed reparameterization.

Fig.: Optimization on Stiefel manifold.
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» The gradient w.r.t. B* can be evaluated efficiently via eSVD

Algorithm 1 Gradient of in-line row-wise decoupling scheme
1: U, 3, V+ SVD(B)

o + diag(X)
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Find f and V3, f for a batch or minibatch
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» Applicable to other semi-unitary/unitary constrained problems
such as ICA, orthogonal sparse PCA, unitary RNN, unitary
beamforming, quadratic assignment problem, etc.

Simulation results

» We compare the performance of our proposed method (PM) to other
techniques such as K-hyperlines (KHL), Gaussian mixture model
(GMM), and sparse filtering (SF).
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Fig. 1: Average MER 1n estimation of 2 X 4 mixing matrix w.r.t. : a) Sparseness. b) Sample size. ¢) Number of sources

» Application in blind separation of convolutive speech mixtures

s;(t) @ . a21(0)

STFT 1T T T T i

s3(t) @
xi(t) = Z ‘a;;(t) *s;(t)
]

Table 1: Output SDR and SIR in dB for 2mic_4src_5cm sub-
set of SISEC dev1 dataset

RT60 130ms 250ms
Source 4 males |4 females| 4 males |4 females
Perf. metric|SDR| SIR |[SDR| SIR [SDR| SIR |[SDR| SIR
PM 4.55|8.273.80|6.38|3.67 |6.06|3.57|5.36
[22] 4.1 16.38|4.47|6.48|3.55|5.07| 3.5 [4.85
[9] 331 - 392 - (262 - 349 -
Input [-4.81[-4.60(-4.76|-4.68|-4.79|-4.64|-4.83(-4.71

» Improvement in SIR i1s 14% on SISEC devl dataset compared to
the state of the art in [22].




