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Designing Graph Spectral Filter Banks

Classical 2-Channel Critically Sampled Filter Bank
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Approach 1: Decompose into Structured
Subgraphs

Bipartite Subgraph Decomposition Circulant Subgraph Decomposition
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Source: Sakiyama and Tanaka, 2014
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Approach 2: Replace Upsampling and
Synthesis Filters with Interpolation Operators

Synthesis Via Interpolation

Analysis Synthesis
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Shuman et al., A multiscale pyramid
transform for graph signals, TSP, 2016



M-Channel Critically Sampled Graph Filter Bank

e Number of vertices in V;

is equal to the number of
eigenvalues in the support
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Sampling and Interpolation

« How to sample a graph signal and interpolate from the samples?

e Subset Vg of vertices is a uniqueness set for a subspace P ift:

If two signals in the subspace P have the same values on the vertices in

the uniqueness set, then they are the same signal
I. Pesenson, “Sampling in Paley-Wiener spaces on combinatorial graphs,” Trans. Amer. Math. Soc., 2008
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e Interpolation (noiseless case):

Jrec = Uj.266, wWhere fg = Ug 1.266¢



Objective: Partition into M Uniqueness Sets
for Ideal Filter Bank Subspaces

500-node Random Sensor Network Minnesota Road Network



Algorithm to Create Uniqueness Set Partitions
Case 1: M=2

e Goal: Find a permutation matrix P such that the submatrices
along the diagonal of PU are full rank:

R

PU =U =

U2

e Proposition: If M=2 and the space spanned by first k columns of U is

orthogonal to the space spanned by last N-k columns, then S is a
uniqueness set for Uk if and only if S¢ is a uniqueness set for Uy 1N

e Steinitz exchange lemma guarantees
that we can find such a permutation

e Equivalently, we can find two
complementary uniqueness sets for
the corresponding spectral subspaces




Finding a Single Uniqueness Set

@ Numerous algorithms have been proposed recently

= Shomorony and Avestimehr, Sampling large data on graphs, GlobalSIP, 2014
= Chen et al., Discrete signal processing on graphs: Sampling theory, TSP, 2015
= Anis et al., Efficient sampling set selection for bandlimited graph signals using
graph spectral proxies, TSP, 2016
= Puy et al., Random sampling of bandlimited signals on graphs, ACHA, 2016
Different objectives: minimal set size, speed, recovery robustness

to noise
Algorithm 1 (Shomorony and Avestimehr (2014)) Compute the smallest S with desig-

nated bandwidth k
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Algorithm to Create Uniqueness Set Partitions
Case 2: M >2

e Goal: Find permutation P s.t.

~

PU =U =

Unr _

e Challenge: After first set of vertices is identified, the shaded
submatrix no longer features orthogonal columns, so you cannot

simply greedily iterate the M=2 method block by block

e May need to do extra row exchanges at each step

e Techniques initially discovered in the context of matroid theory tell

us how to perform these exchanges
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Greene, A multiple exchange property for bases, Proc. AMS, 1973

Greene and Magnanti, Some abstract pivot algorithms, SIAM J. Appl. Math., 1975
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Algorithm to Create Uniqueness Set Partitions
Case 2: M>2

Bl — {332,333} BQ — {563,334,565}
M1 M2
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algorithms, STIAM J.

B, = (Bs — x4) U (x2) = {2, 3,25} Appl. Math., 1975




Example: Piecewise Smooth Signal
Partition and Analysis Coefficients
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Example: Piecewise Smooth Signal
Atoms

e Atoms jointly localized in vertex and graph spectral domains

e Non-zero wavelet coeflicients clustered around discontinuities
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Compression Example
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Ongoing Work

e Computational approximations to improve scaling

- Non-uniform random sampling (c.f., Puy et al., 2015)

- Stably reconstruct signals supported on a specific spectral band
without requiring a full eigendecomposition

e Reconstruction robustness

- Many different partitions into uniqueness sets; which ones makes
reconstruction more stable when transform coeflicients are noisy or
missing?

e [terated filter bank: how does iterating with fewer channels
compares to a single level with more channels?

e Formally characterize the relationships between the decay of
the analysis coeflicients, properties of the graph signals, and
the underlying graph structure
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