End-to-end speaker spoofing detection

Heinrich Dinkel, Nanxin Chen, Yanmin Qian, Kai Yu Shanghai Jiao Tong University

Outline

• Intro

- \circ Speaker verification
- Speaker spoofing attacks

• Spoofing

- \circ Countermeasures
- Corpus
- \circ Motivation

• Deep Learning

- CLDNN
- Results

Speaker verification

- Purpose: Secure assets over voice "voice fingerprint"
- Structure:
 - Train [Background Model]
 - Enrol [Few utterances]
 - Eval [Utterance \rightarrow Score \rightarrow Decision]
- Metric:
 - \circ False Acceptance Rate (FAR)
 - False Rejection Rate (FRR)
 - Equal Error Rate (EER),
 - Half Total Error Rate (HTER)

Heinrich Dinkel, Shanghai Jiao Tong University, End-to-end speaker spoofing detection

Spoof detection - Attacks

Spoofing detection - Example system

Corpus: BTAS 2016

- Impersonation
- Focus: Replay Attacks (VC,TTS also)
- Different "Quality" Attacks (Microphone, Speaker)
- Evaluation has unseen replay (Focus)
- HTER as measure

Туре	Train	Dev	Eval
Genuine	4973	4995	5576
Attacks	38580	38580	44920
TTS	2.5%	2.5%	2.5%
VC	90%	90%	87%
Replay (K)	7.5%	7.5%	7%
Replay (U)	_	-	3.5%

BTAS2016 - Evaluation

• Uses HTER, computed from the development set threshold:

$$\theta_{dev} = \arg\min_{\theta} \frac{\text{FAR}_{\text{dev}}(\theta) + \text{FRR}_{\text{dev}}(\theta)}{2}$$
$$\text{HTER}_{\text{eval}} = \frac{\text{FAR}_{\text{eval}}(\theta_{\text{dev}}) + \text{FRR}_{\text{eval}}(\theta_{\text{dev}})}{2}$$

Countermeasures

- Standard: Feature + Classifier
- Cepstral features
 - Mel cepstrum
 - Perceptual Linear Predictive
 - \circ Constant Q
 - \circ Gammatone Frequency
- Gaussian mixture model
- Identity Vector (I-Vector)
- Deep feature approach

Countermeasures - Deep features

- Extension of classic feature + classifier
- Input: Feature
 Output: Class Label
 Purpose: Extract spoofing
 vector (s-vector)
- Final classifier: GMM, LDA, SVM

10

Corpus: Countermeasures and Baseline of BTAS2016

- Spoof-aware features
- Features > Classifiers
- Aim: Outperform 1st

Position	Feature	Classifier	HTER (%)
3rd	PLP-39	BLSTM-DNN	2.20
2nd	MCEP	LDA	2.04
1st	MFCC+i-MFCC	GMM	1.26

Motivation and Model proposal

Motivation

- Features > Classifier
- Two "independent" tasks: feature + classifier
- Non-task optimized feature (trial + error)
- Classifier parameter (trial + error)

Why not both?

Convolutional Long Short Term Neural Networks (CLDNN)

- Proposed by Google [Learning the Speech Front-end With Raw Waveform CLDNNs]
- Front-end feature extractor (CNN)
- Sequence-classification (LSTM)
- Improved Accuracy (DNN)

All in one model

14

Model - Time frequency CNN

Similar to fast fourier transform

Enhances invariance

Extracts feature

Operations only over one dimension

Heinrich Dinkel, Shanghai Jiao Tong University, End-to-end speaker spoofing detection

Model - LSTM

16

Model - Classifier

- Standard neural network (512 hidden neurons)
- Maps LSTM prediction to error
- Enhanced by a 50% dropout layer

Model description - Overview

Heinrich Dinkel, Shanghai Jiao Tong University, End-to-end speaker spoofing detection 18

Experiments

Experiment - Feature details

- Samplerate 16kHz, Converted 32bit data (replay) → 16 bit (others)
- Input is 35ms window frame (560)
- Window shift by 12.5ms (200)
- Sequence length of 25
- 50% Dropout in Classifier
- Adadelta optimization (no learning rate)
- 3 Iterations
- 5 Output neurons (Genuine + 4 Spoof) [merged HQ+LQ]

20

Results

Attack	MFCC+i-MFCC+GMM	CLDNN
All	1.26%	0.82 %
TSS	0.68%	0.51%
VC	0.75%	0.41%
Replay (Known)	1.01%	0.77%
Replay (Unknown)	14.78%	11.24%

All results in HTER%

Summary

- Neural network + raw wave does work (First)
- End to end processing simplifies pipeline
- Capable of generalization (unseen attacks)
- Can also be used as feature extractor (future experiments)

Thanks!

Questions?

heinrich.dinkel@gmail.com

