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Introduction

Hyperspectral images

I Each pixel is represented in several spectral bands
I The pixel spectrum is related to its physical elements

I N pixels

I L spectral bands

I R endmembers
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Introduction

Problem statement

I Supervised unmixing: estimate the abundances while assuming
known endmembers

I Take into account the e�ect of multiple scattering interactions

I Take into account the known properties/constraints of the
abundances and the other parameters of interest

I Propose an algorithm with a reduced computational complexity
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Mixture models

Linear mixture model (LMM)

yn =Man + en

I yn is the nth pixel spectrum of size (L× 1)

I M = [m1, ...,mR] is the (L×R) endmember matrix

I en ∼ N
(
0L, σ

2I
)
is an (L× 1) white Gaussian noise

I an = [a1,n, . . . , aR,n]
T

is the abundance vector satisfying:

ar,n ≥ 0, r = 1, · · · , R and
∑R

r=1 ar,n = 1
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Mixture models

Bilinear models

yn =Man +
∑

r,r′ x
r,r′

n mr �mr′ + en with xr,r
′

n ≥ 0.

I � denotes the Hadamard (term-wise) product.

Di�erent constraints on xr,r
′

n

I Nascimento model1, FM2, GBM3, PPNMM4, RCA-MCMC5

1J. M. Bioucas-Dias and al., �Nonlinear mixture model for hyperspectral
unmixing�, Proc. SPIE ISPRS XV, vol. 7477, no. 1, 2009, p. 74770I.

2W. Fan, and al., �Comparative study between a new nonlinear model and
common linear model for analysing laboratory simulated-forest hyperspectral
data,� Int. Journal of Remote Sens., vol. 30, no. 11, pp. 2951-2962, June 2009.

3A. Halimi and al., �Nonlinear unmixing of hyperspectral images using a
generalized bilinear model,� IEEE TGRS, vol. 49, no. 11, pp. 4153-4162, 2011.

4Y. Altmann, and al., �Supervised nonlinear spectral unmixing using a
postnonlinear mixing model for hyperspectral imagery,� IEEE TIP, vol. 21, no. 6,
pp. 3017-3025, 2012.

5Y. Altmann, and al., �Bayesian nonlinear hyperspectral unmixing with spatial
residual component analysis,� IEEE TCI, vol. 1, no. 3, pp. 174-185, 2015.
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Mixture models

Proposed residual component model: RC-NL-K

yn =Man + φNL-Kn (M ,xn) + en

with φNL-Kn (M ,xn) = Q
(K)(M)xn, and K ≥ 2

I Q(K)(M) is the (L×DK) matrix gathering the interaction
spectra of the form mi �mj � · · · �ms,

I xn ≥ 0 is the nth vector of non-negative nonlinearity coe�cients of
size (DK × 1),
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Mixture models

Proposed residual component model: RC-NL-K

yn =Man + φNL-Kn (M ,xn) + en

with φNL-Kn (M ,xn) = Q
(K)(M)xn, and K ≥ 2

Special case: linear model

I Reduces to LMM for φNL-Kn (M ,xn) = 0, i.e., x
(d)
n = 0,∀n, d
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Mixture models

Proposed residual component model: RC-NL-K

yn =Man + φNL-Kn (M ,xn) + en

with φNL-Kn (M ,xn) = Q
(K)(M)xn, and K ≥ 2

Special case: bilinear models

I K = 2, D2 = R(R+1)
2 ,

I Q(2)(M) =
(√

2m1,2, · · · ,
√
2mR−1,R,m1,1, · · · ,mR,R

)
,

I xn =
(
x
(1,2)
n , · · · , x(R−1,R)

n , x
(1,1)
n , · · · , x(R,R)

n

)T
, ∀n,

I mr,r′ =mr �mr′ .

I Relation to bilinear models: RCA-MCMC, NM, FM, GBM,
PPNMM
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Mixture models

Proposed residual component model: RC-NL-K

yn =Man + φNL-Kn (M ,xn) + en

with φNL-Kn (M ,xn) = Q
(K)(M)xn, and K ≥ 2

Special case: multilinear model

I K > 2,

I Q(K) =
[
Q

(K)
2 ,Q

(K)
3 , · · · ,Q(K)

K

]
,

I xn is the nth vector of nonlinearity coe�cients of size (DK × 1),

I DK =
∑K

i=2
(R+i−1)!
i!(R−1)! , where z! denotes the factorial of z
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Optimisation problem

General formulation

C (Z) = LQ (Z) + ψ (Z)

I LQ (Z) = 1
2 ||Y − [M ,Q]Z||2F due to the Gaussian noise

properties

I Z =
[
A>,X>

]>
the parameters of interest

I ψ (Z): regularization term to account for the known
properties/constraints on Z

I A matrix of abundances of size (R×N)

I X matrix of coe�cients of size (D ×N)
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Optimisation problem

Prior knowledge/hypotheses on Z

Abundances: A

I Non-negativity and sum-to-one constraints

Nonlinearity coe�cients: X

I Non-negativity of the coe�cients (a widely used assumption)

I The nonlinearity appears in some pixels of the image (as in 6, 7)

I In a nonlinear pixel, only a few interactions are active (implicitly
assumed by bilinear models).

6C. Fevotte, and al., �Nonlinear hyperspectral unmixing with robust
nonnegative matrix factorization,� IEEE TIP, vol. 24, no. 12, 2015.

7Y. Altmann, and al., �Residual component analysis of hyperspectral images:
Application to joint nonlinear unmixing and nonlinearity detection,� IEEE TIP,
vol. 23, no. 5, 2014.
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Optimisation problem

Cost function

C (Z) =LQ (Z) + iR+
(A) + i{1(1,R)}

(
1(1,R)A

)
+ τ1||X||1 + τ2||X||2,1 + iR+

(X)

I τ1 > 0, τ2 > 0 are �xed regularization parameters
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Optimisation problem

Cost function

C (Z) =LQ (Z) + iR+
(A) + i{1(1,R)}

(
1(1,R)A

)
+ τ1||X||1 + τ2||X||2,1 + iR+

(X)

Abundance contraints

I iR+
(A) Abundances non-negativity constraint

I i{1(1,R)}
(
1(1,R)A

)
Abundances sum-to-one constraint
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Nonlinearity coe�cients
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The estimation algorithm: NUSAL-K

Description of the NUSAL-K algorithm (1)

Nonlinear Unmixing by variable Splitting and Augmented Lagrangian
(with order K)

argmin
Z

C (Z) = argmin
Z

LQ (Z) + iR+ (A) + i{1(1,R)}
(
1(1,R)A

)
+τ1||X||1 + τ2||X||2,1 + iR+ (X)

with Z =
[
A>,X>

]>
.

Equivalent formulation

argmin
z
C (Z) = argmin

Z

J∑
j=1

gj

(
H(j)Z

)

I gj : R
pj×N → R are proper and convex functions

I H(j) ∈ Rpj×(R+D) are selection matrices
I Uj =HjZ,∈ Rpj×N

15 / 28



Fast Hyperspectral Unmixing in Presence of Sparse Multiple Scattering Nonlinearities

The estimation algorithm: NUSAL-K

Description of the NUSAL-K algorithm (2)

Nonlinear Unmixing by variable Splitting and Augmented Lagrangian
(with order K)

g1 (U1) = LQ (U1) , H1 = I(R+DK)

g2 (U2) = iR+
(U2) , H2 = I(R+DK)

g3 (U3) = i{1>}
(
1>U3

)
, H3 =

[
IR,0(R,DK)

]
g4 (U4) = τ1||U4||1, H4 =

[
0(DK ,R), IDK

]
g5 (U5) = τ2||U5||2,1, H5 =

[
0(DK ,R), IDK

]
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The estimation algorithm: NUSAL-K

Description of the NUSAL-K algorithm (3)

Initialize U
(0)
j ,F

(0)
j , ∀j, µ > 0. Set k ← 0, conv← 0

while conv= 0 do

for j=1:J do

ξ
(k)
j ← U

(k)
j + F

(k)
j ,

end for

Linear system of equations

Z(k+1) ←
[∑J

j=1 (Hj)
>Hj

]−1 ∑J
j=1 (Hj)

> ξ
(k)
j ,

Moreau proximity operators
for j=1:J do

V
(k)
j ←HjZ

(k+1) − F
(k)
j ,

U
(k+1)
j ← argmin

Uj

µ
2
||Uj − V

(k)
j ||2 + gj (Uj),

end for

Update Lagrange multipliers
for j=1:J do

F
(k+1)
j ← U

(k+1)
j − V

(k)
j ,

end for

k = k + 1
end while
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Results

Synthetic image (1)

Considered image

I A synthetic image (N = 100× 100 pixels, R = 3 endmembers,
L = 207 bands)

I K = 4 spatial classes (obtained using a Potts-MRF) whose pixels
are generated according to LMM, RCA-NL3, GBM and PPNMM

I Abundance uniformly generated in the simplex of positivity and
sum-to-one constraints.
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Results

Synthetic image (2)

Comparison algorithms

I SUNSAL8, SKhype9, CDA-NL10, RNMF11 and the proposed
NUSAL-2 and NUSAL-3.

Evaluation criteria

RMSE (A) =

√√√√ 1

N R

N∑
n=1

‖an − ân‖2

SAM =
1

N

N∑
n=1

arccos

(
ŷTnyn

‖yn‖ ‖ŷn‖

)
8J. Bioucas-Dias and al., �Alternating direction algorithms for constrained

sparse regression: Application to hyperspectral unmixing,�, WHISPERS, 2010.
9J. Chen, and al., �Nonlinear unmixing of hyperspectral data based on a

linear-mixture/nonlinear �uctuation model,� IEEE TIP, vol. 61, no. 2, 2013.
10A. Halimi, and al., �Hyperspectral unmixing in presence of endmember

variability, nonlinearity or mismodelling e�ects,� IEEE TIP, vol. 25, no. 10, 2016.
11C. Fevotte, and al., �Nonlinear hyperspectral unmixing with robust

nonnegative matrix factorization,� IEEE TIP, vol. 24, no. 12, 2015.
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Results

Synthetic image (3): performance

RMSE

RMSE SAM
Time

C1 C2 C3 C4
(s)

LMM NL-3 GBM PPNMM

SUNSAL 1.4 20.3 5.8 11.9 10.8 7.6 0.1

SKhype 2.2 11.7 3.0 3.9 6.0 − 466

CDA-NL 1.4 4.5 2.1 4.2 2.9 5.8 182

RNMF 1.5 12.8 2.5 5.2 6.4 6.8 110

NUSAL-2 1.4 3.9 2.0 5.0 2.8 5.8 7

NUSAL-3 1.4 2.9 2.0 4.9 2.6 5.7 19

Results on synthetic data.

Green: best, Red: second best.
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Results

Real image (1): Mo�ett image

Considered subimage
100× 100 pixels, L = 152 spectral bands, R = 3 endmembers.
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Results

Real image (2): abundance estimation

SKhype (177 s), CDA-NL (317 s), RNMF (278 s), NUSAL-2 (13 s),
and NUSAL-3 (29 s)
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Results

Real image (3): Residuals

Square root of the energies of the di�erence between the reconstructed
signal and the linear model obtained with ||ŷi,j −Mâi,j ||
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Results

Real image (4): nonlinearity coe�cients

The nonlinearity coe�cients are active for some pixels +
Most interactions are captured by the bilinear terms
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Conclusions

Conclusions & future work

Conclusions

I Generalization of the existing bilinear models by accounting for
multiple interactions

I Introduction of a fast estimation algorithm called NUSAL-K

I Good performance for synthetic and real images

Future work

I Generalizing the model to include other prior information
regarding the estimated coe�cients

I Estimation of the hyperparameters
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Conclusions

End

Thank you for your attention

28 / 28



Fast Hyperspectral Unmixing in Presence of Sparse Multiple Scattering Nonlinearities

Conclusions

Real image (1): Madonna image

Considered subimage
160× 200 pixels, L = 160 spectral bands, R = 4 endmembers.
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Conclusions

Real image (2): abundance estimation
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Conclusions

Real image (3): Residuals

Square root of the energies of the di�erence between the reconstructed
signal and the linear model obtained with ||ŷi,j −Mâi,j ||
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Conclusions

Real image (4): nonlinearity coe�cients

The nonlinearity coe�cients are active for some pixels +
Most interactions are captured by the bilinear terms
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