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Introduction

Hyperspectral images

» Each pixel is represented in several spectral bands
» The pixel spectrum is related to its physical elements

Reflectan
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Introduction

Problem statement

v

Supervised unmixing: estimate the abundances while assuming
known endmembers

v

Take into account the effect of multiple scattering interactions

v

Take into account the known properties/constraints of the
abundances and the other parameters of interest

» Propose an algorithm with a reduced computational complexity
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Mixture models

Linear mixture model (LMM)

yn:Man+en

v

y,, is the nth pixel spectrum of size (L x 1)

v

M = [my,...,mpg] is the (L x R) endmember matrix

v

en ~N (07,0%l) is an (L x 1) white Gaussian noise

T s
> a, =a1,,...,ar,]" is the abundance vector satisfying:

arn >0,r=1,--- /R and Elear,nzl
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Mixture models

Bilinear models

! . poapnd
Yo =Ma, + > . 20" m, ©my + e, with ;" > 0.

» © denotes the Hadamard (term-wise) product.

. . o el
Different constraints on z)"

» Nascimento model!, FM2, GBM?, PPNMM¢*, RCA-MCMC(?
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3A. Halimi and al., “Nonlinear unmixing of hyperspectral images using a
generalized bilinear model,” IEEE TGRS, vol. 49, no. 11, pp. 4153-4162, 2011.

4Y. Altmann, and al., “Supervised nonlinear spectral unmixing using a
postnonlinear mixing model for hyperspectral imagery,” IEEE TIP, vol. 21, no. 6,
pp. 3017-3025, 2012.

5Y. Altmann, and al., “Bayesian nonlinear hyperspectral unmixing with spatial
residual component analysis,” IEEE TCI, vol. 1, no. 3, pp. 174-185, 2015.
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Mixture models

Proposed residual component model: RC-NL-K

Yn = Man + ¢SL_K (M7mn) +en

with pN-K (M, x,,) = Q) (M) ,,, and K > 2

» Q) (M) is the (L x Dy ) matrix gathering the interaction
spectra of the form m; ©m; ©®--- © my,

» x,, > 0 is the nth vector of non-negative nonlinearity coefficients of
size (D x 1),

2 order Kt order
interaction interaction

spectra spectra 2 order
| :| nonlinearity
[ coefficients
0L < .
K order
| nonlinearity

coefficients
NL-K
n

[%
Lx1 L X Dy De X 1
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Mixture models

Proposed residual component model: RC-NL-K

Yn = Man + ¢SL_K (Mamn) +en

with pN-K (M, x,,) = Q) (M) ,,, and K > 2

Special case: linear model

» Reduces to LMM for X% (M, x,,) =0, i.e., xﬁf’ =0,Vn,d
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Mixture models

Proposed residual component model: RC-NL-K

Yo = Ma, + NV E (M, z,) + e,

with pN-K (M, x,,) = Q) (M) ,,, and K > 2

Special case: bilinear models

> K = 2, D2 = 7R(R2+1)’

> Q(Z) (M) = (\/iml,Qa ) \/ﬁmR—l,Ra my g, amR,R) )

T
(1,2) (R—1,R) _(1,1) (R,R)
>a:n:(xn IR @By, gaco o By , Vn,
My = My O My

Relation to bilinear models: RCA-MCMC, NM, FM, GBM,
PPNMM

v

v
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Mixture models

Proposed residual component model: RC-NL-K

Yn = Man + ¢SL_K (Mawn) +en

with pN-K (M, x,,) = Q) (M) ,,, and K > 2

Special case: multilinear model
> K > 2
K K K
>Q(K'): Qé )?Qi()) )37 %)}7
> x, is the nth vector of nonlinearity coefficients of size (Dy x 1),

> Dy = ZfiQ %, where z! denotes the factorial of z
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Optimisation problem

General formulation

C(2)=Lq(Z2)+v(2)

v

Lqg(Z)=3||Y — [M,Q]Z||3 due to the Gaussian noise
properties

Z = [AT, X7
1 (Z): regularization term to account for the known
properties/constraints on Z

]T

v

the parameters of interest

v

v

A matrix of abundances of size (R x N)

v

X matrix of coefficients of size (D x N)
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Optimisation problem

Prior knowledge/hypotheses on Z

Abundances: A

» Non-negativity and sum-to-one constraints

Nonlinearity coefficients: X
» Non-negativity of the coeflicients (a widely used assumption)
» The nonlinearity appears in some pixels of the image (as in 6, 7)

» In a nonlinear pixel, only a few interactions are active (implicitly
assumed by bilinear models).

6C. Fevotte, and al., “Nonlinear hyperspectral unmixing with robust
nonnegative matrix factorization,” IEEE TIP, vol. 24, no. 12, 2015.

7Y. Altmann, and al., “Residual component analysis of hyperspectral images:
Application to joint nonlinear unmixing and nonlinearity detection,” IEEE TIP,
vol. 23, no. 5, 2014.
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Optimisation problem

Cost function
C(Z)=Lg (Z)+ IR, (A) + i{l(l,R)} (1(17R)A)

+ 1| X1 + 72l X |21 + iR, (X)

» 71 > 0,75 > 0 are fixed regularization parameters
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Optimisation problem

Cost function

C(Z)=Lg(Z)+ IR, (A) + i{l(l,R)} (1(17R)A)
+ 71X |1 + 72| X 21 + gy (X)

Abundance contraints

> i, (A) Abundances non-negativity constraint

> i{1<1,R>} (1(17R)A) Abundances sum-to-one constraint

13 / 28



Fast Hyperspectral Unmixing in Presence of Sparse Multiple Scattering Nonlinearities

Optimisation problem

Cost function

C(Z)=Lg (Z)+ iR, (A) + i{1(1,R)} (1(17R)A)
+ 7| X |1 + 72|[ X |21 + ir, (X)

Nonlinearity coefficients

Xp Xy e XN Xq Xg e Xy Xy Xy e

XN

Iy L1 L+
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The estimation algorithm: NUSAL-K
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The estimation algorithm: NUSAL-K

Description of the NUSAL-K algorithm (1)

Nonlinear Unmixing by variable Splitting and Augmented Lagrangian
(with order K)

arg;mn(,’ (Z) :arg;mn Lo (Z) +ir, (A)+ i{lu,m} (11,r)A)

7|1 X [l + 72| X |21 + ir, (X)
with Z = [AT,XT]".
Equivalent formulation

J
argminC (Z) = argminz Jj (H(j)Z)
iz zZ

=il

> gj: RPi*N — R are proper and convex functions
» HU) ¢ RPi*(E+D) are selection matrices
» U; = H;Z, e RPi¥N
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The estimation algorithm: NUSAL-K

Description of the NUSAL-K algorithm (2)

Nonlinear Unmixing by variable Splitting and Augmented Lagrangian
(with order K)

91 (U1) = Lo (Uh), Hy =T py)

92 (U2) = ir, (U2), H> =1(pipy)

g3 (Us) = iy (17Us) H; = [Ir,0(r,py))
94 (Us) = 71||Ual|1, H, = [0(p,,r); Ipy ]
95 (Us) = 72||Us||2,1, H; = [0(p,,r) Ipy]
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The estimation algorithm: NUSAL-K

Description of the NUSAL-K algorithm (3)

Initialize U\”, F\”),Vj, yi > 0. Set k < 0, convé 0
while conv= 0 do
for j=1:J do
&P Uu® + 7PV,
end for
Linear system of equations

Z0H) [ (H) T By S, (Hy) T e,
Moreau proximity operators
for j=1:J do
V;(k) « H,;Zz(*+1) Fj(k)’
k41 : k
U; SR a,r%mln%HUj — V}( >H2 + 95 (U;),
J

end for
Update Lagrange multipliers
for j=1:J do
Fj(k+1) - U;k'H) _ Vj(k)7
end for
k=k+1
end while
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Results
Synthetic image (1)

Considered image
» A synthetic image (N = 100 x 100 pixels, R = 3 endmembers,
L = 207 bands)
» K = 4 spatial classes (obtained using a Potts-MRF) whose pixels
are generated according to LMM, RCA-NL3, GBM and PPNMM
» Abundance uniformly generated in the simplex of positivity and
sum-to-one constraints.
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Results

Synthetic image (2)

Comparison algorithms

» SUNSALZ, SKhype?, CDA-NL!°, RNMF!! and the proposed
NUSAL-2 and NUSAL-3.

Evaluation criteria .
1 « . 12
RMSE (A) = TH ; Han — Qn H

YnYn
arccos
N Z <HynH Hyn\l)

n=1

SAM

8]. Bioucas-Dias and al., “Alternating direction algorithms for constrained
sparse regression: Application to hyperspectral unmixing,”, WHISPERS, 2010.
9J. Chen, and al., “Nonlinear unmixing of hyperspectral data based on a
linear-mixture/nonlinear fluctuation model,” IEEE TIP, vol. 61, no. 2, 2013.
10A. Halimi, and al., “Hyperspectral unmixing in presence of endmember

variability, nonlinearity or mismodelling effects,” IEEE TIP, vol. 25, no. 10, 2016.

1. Fevotte, and al., “Nonlinear hyperspectral unmixing with robust
nonnegative matrix factorization,” IEEFE TIP, vol. 24, no. 12, 2015.
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Results

Synthetic image (3): performance

RMSE ]
Time
C1 Co Cs Cy RMSE | SAM ®)
LMM | NL-3 | GBM | PPNMM

SUNSAL 14 20.3 5.8 11.9 10.8 7.6 0.1
SKhype 2.2 11.7 3.0 3.9 6.0 — 466
CDA-NL 1.4 4.5 2.1 4.2 2.9 5.8 182
RNMF 1.5 12.8 2.5 5.2 6.4 6.8 110

NUSAL-2 1.4 3.9 2.0 5.0 2.8 5.8 7
NUSAL-3 1.4 2.9 2.0 4.9 2.6 N 19

Results on synthetic data.

Green: best, Red: second best.

21 /28



Fast Hyperspectral Unmixing in Presence of Sparse Multiple Scattering Nonlinearities

Results

Real image (1): Moffett image

Considered subimage
100 x 100 pixels, L = 152 spectral bands, R = 3 endmembers.
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Results

Real image (2): abundance estimation

NUSAL2 SUNSAL

NUSAL3

SKhype (177 s), CDA-NL (317 s), RNMF (278 5), NUSAL-2 (13 s),
and NUSAL-3 (29 s)
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Results

Real image (3): Residuals
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Square root of the energies of the difference between the reconstructed
signal and the linear model obtained with ||7; ; — Ma, ;||
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Results

Real image (4): nonlinearity coefficients
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The nonlinearity coefficients are active for some pixels +
Most interactions are captured by the bilinear terms
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Conclusions

Conclusions & future work

Conclusions

» Generalization of the existing bilinear models by accounting for
multiple interactions

» Introduction of a fast estimation algorithm called NUSAL-K

» Good performance for synthetic and real images

Future work

» Generalizing the model to include other prior information
regarding the estimated coefficients

» Estimation of the hyperparameters
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Conclusions

End

Thank you for your attention
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Conclusions

Real image (1): Madonna image

Considered subimage
160 x 200 pixels, L = 160 spectral bands, R = 4 endmembers.
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Conclusions

Real image (2): abundance estimation

RUSAL  RNMF  SKHype

NUSAL2

NUSAL3
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Conclusions

Real image (3): Residuals

CDA-NL
RNMF

NUSAL2
NUSALS3

Square root of the energies of the difference between the reconstructed
signal and the linear model obtained with ||g; ; — Ma, ;||

w
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Conclusions

Real image (4): nonlinearity coefficients
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The nonlinearity coefficients are active for some pixels +
Most interactions are captured by the bilinear terms
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