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INTRODUCTION
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e Goal: model for drum note detection in polyphonic music
- In:  Western popular music containing drums
- Out: Symbolic representation of notes played by drum instruments

e Focus on three major drum instruments: snare, bass drum, hi-hat
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INTRODUCTION
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e \Wide range of applications
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- Sheet music generation
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- Re-synthesis for music production

- Higher level MIR tasks
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SYSTEM ARCHITECTURE
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ADVANTAGES OF RNNS

e Relatively easy to fit large and diverse datasets

e Once trained, computational complexity of transcription relatively low
e Online capable

e Generalize well

e Easy to adapt to new data

e End-to-end: learn features, event detection, and classification at once
e Scale better with number of instruments (rank problem in NMF)

e Trending topic: lots of theoretical work to benefit from
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DATA PREPARATION

e Signal preprocessing

D

ip

RNN

- Log magnitude spectrogram @ 100Hz

- Log frequency scale, 84 frequency

bins

— Additionally 1st order differential
- 168 value input vector for RNN
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DATA PREPARATION

e Signal preprocessing

D

ip

RNN

- Log magnitude spectrogram @ 100Hz

- Log frequency scale, 84 frequency

bins

— Additionally 1st order differential
- 168 value input vector for RNN

e RNN targets

- Annotations from training examples

- Target vectors @ 100Hz frame rate

J¥U (=

150

hi-hat}-

sharef

bass|

PP

spectrogram

targets

T

T

T

|

|

200

400

600

800

1£S ||l

1000



RNN ARCHITECTURE
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e Two layers containing 50 GRUs each
— Recurrent connections

e Output: dense layer with three sigmoid units
- No softmax: events are independent

- Value represent certainty/pseudo-probability
of drum onset

- Does not model intensity/velocity
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PEAK PICKING
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Select onsets at position n in activation function F(n) if:

F(n) =max(F(n—m),---,F(n)),
F(n) > mean(F(n —a),--- ,F(n)) + 9,

n—mnpp > w,

[Bdck et. al 2012]
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RNN TRAINING

e Unfold RNN in time for training

output (yn) and targets (yn) for each
iInstrument

weighting (wi) per instrument
(~+3% f-measure)

e Update model parameters (0) using

gradient () calculated on mini-batch and

learn rate (n)
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Backpropagation through time (BPTT)

Loss (¥): mean cross-entropy between

Mean over instruments with different
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[Olah 2015]
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RNN TRAINING (2)

« RMSprop Ot ="01—nGi
- uses weight for learn rate based on EG4 = 0.9E[G%;—1 + 0.1G7
moving mean squared gradient E[Z7] n
Ory1 =0t — > Gt
VE[GY: + €

e Data augmentation

- Random transformations of training
samples (pitch shift, time stretch)

e Drop-out

- Randomly disable connections
between second GRU layer and dense
layer

freq. bin

e Label time shift instead of BDRNN
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DATA /| EVALUATION

e IDMT-SMT-Drums [Dittmar and Gartner 2014]

- Three classes (Real, Techno, and Wave / recorded/synthesized/

sampled)

— 95 simple solo drum tracks (30sec), plus training and single
instrument tracks

e ENST-Drums [Gillet and Richard 2006]

— Drum recordings, three drummers on three different drum kits

- ~/7/5 min per drummer, training, solo tracks plus accompaniment

e Precision, Recall, F-measure for drum note onsets
e lolerance: 20ms
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EXPERIMENTS

e SMT optimized
- Six fold cross-validation on randomized split of solo drum tracks

e SMT solo
— Three fold cross-validation on different types of solo drum tracks

e ENST solo

— Three fold cross-validation on solo drum tracks of different
drummers / drum Kkits

e ENST accompanied
— Three fold cross-validation on tracks with accompaniment
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RESULTS

Method
NMF-SAB

[Dittmar and Gartner 2014]

PFNMF
[Wu and Lerch 2015]

HMM

[Paulus and Klapuri 2009]

BDRNN

[Southall et al. 2016]

tsSRNN
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RESULTS

Method SMT opt. | SMT solo | ENST solo | ENST acc.
NMF-SAB . . .
[Dittmar and Gartner 2014]

PFNMF

[Wu and Lerch 2015] 81.6 7.9 2.2

HMM | — 81.5 74.7

[Paulus and Klapuri 2009]

BDRNN

[Southall et al. 2016] 83.3 3.2 66.9

tsRNN 92.5 83.3 75.0
6=0.10 6=0.15 6=0.15 6=0.10
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RESULTS
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CONCLUSIONS

e Jowards a generic end-to-end acoustic model for drum detection
using RNNs

e Data augmentation greatly improves generalization

e Weighting loss functions helps to improve detection of difficult
instruments

e RNNSs with label time shift perform equal to BDRNN

e Simple RNN architecture performs better or similarly well as
handcrafted techniques

while using a smaller tolerance window (20ms)
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