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INTRODUCTION

• Goal: model for drum note detection in polyphonic music 
- In:     Western popular music containing drums 
- Out:  Symbolic representation of notes played by drum instruments 

• Focus on three major drum instruments: snare, bass drum, hi-hat
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INTRODUCTION

• Wide range of applications 
- Sheet music generation 
- Re-synthesis for music production 
- Higher level MIR tasks
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SYSTEM ARCHITECTURE
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ADVANTAGES OF RNNS

• Relatively easy to fit large and diverse datasets 

• Once trained, computational complexity of transcription relatively low 

• Online capable 

• Generalize well 

• Easy to adapt to new data 

• End-to-end: learn features, event detection, and classification at once 

• Scale better with number of instruments (rank problem in NMF) 

• Trending topic: lots of theoretical work to benefit from
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DATA PREPARATION

• Signal preprocessing 
- Log magnitude spectrogram @ 100Hz 

- Log frequency scale, 84 frequency 
bins 

- Additionally 1st order differential 

- 168 value input vector for RNN
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• RNN targets 

- Annotations from training examples 

- Target vectors @ 100Hz frame rate



RNN ARCHITECTURE

• Two layers containing 50 GRUs each 
- Recurrent connections 

• Output: dense layer with three sigmoid units 
- No softmax: events are independent 
- Value represent certainty/pseudo-probability 

of drum onset 
- Does not model intensity/velocity
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Select onsets at position n in activation function F(n) if:
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[Böck et. al 2012]
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RNN TRAINING

• Backpropagation through time (BPTT)  
• Unfold RNN in time for training 

• Loss (ℒ): mean cross-entropy between 
output (ŷn) and targets (yn) for each 
instrument 

• Mean over instruments with different 
weighting (wi) per instrument  
(~+3% f-measure) 

• Update model parameters (𝜽) using 
gradient (𝒢) calculated on mini-batch and 
learn rate (𝜂)
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[Olah 2015]



RNN TRAINING (2)

• RMSprop 
- uses weight for learn rate based on 

moving mean squared gradient E[𝒢2] 

• Data augmentation 
- Random transformations of training 

samples (pitch shift, time stretch) 

• Drop-out 
- Randomly disable connections 

between second GRU layer and dense 
layer 

• Label time shift instead of BDRNN
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DATA / EVALUATION

• IDMT-SMT-Drums [Dittmar and Gärtner 2014] 
- Three classes (Real, Techno, and Wave / recorded/synthesized/

sampled) 
- 95 simple solo drum tracks (30sec), plus training and single 

instrument tracks 

• ENST-Drums [Gillet and Richard 2006] 
- Drum recordings, three drummers on three different drum kits 
- ~75 min per drummer, training, solo tracks plus accompaniment 

• Precision, Recall, F-measure for drum note onsets 

• Tolerance: 20ms
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EXPERIMENTS

• SMT optimized 
- Six fold cross-validation on randomized split of solo drum tracks 

• SMT solo 
- Three fold cross-validation on different types of solo drum tracks 

• ENST solo 
- Three fold cross-validation on solo drum tracks of different 

drummers / drum kits 

• ENST accompanied 
- Three fold cross-validation on tracks with accompaniment
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RESULTS
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Method SMT opt. SMT solo ENST solo ENST acc.
NMF-SAB  
[Dittmar and Gärtner 2014]

95.0 — — —

PFNMF  
[Wu and Lerch 2015] — 81.6 77.9 72.2

HMM 
[Paulus and Klapuri 2009]

— — 81.5 74.7

BDRNN  
[Southall et al. 2016] 

96.1 83.3 73.2 66.9

tsRNN 96.6 92.5 83.3 75.0

𝛿 = 0.15𝛿 = 0.10 𝛿 = 0.15 𝛿 = 0.10



RESULTS

14

Method SMT opt. SMT solo ENST solo ENST acc.
NMF-SAB  
[Dittmar and Gärtner 2014]

95.0 — — —

PFNMF  
[Wu and Lerch 2015] — 81.6 77.9 72.2

HMM 
[Paulus and Klapuri 2009]

— — 81.5 74.7

BDRNN  
[Southall et al. 2016] 

96.1 83.3 73.2 66.9

tsRNN 96.6 92.5 83.3 75.0

𝛿 = 0.15𝛿 = 0.10 𝛿 = 0.15 𝛿 = 0.10



RESULTS

14

Method SMT opt. SMT solo ENST solo ENST acc.
NMF-SAB  
[Dittmar and Gärtner 2014]

95.0 — — —

PFNMF  
[Wu and Lerch 2015] — 81.6 77.9 72.2

HMM 
[Paulus and Klapuri 2009]

— — 81.5 74.7

BDRNN  
[Southall et al. 2016] 

96.1 83.3 73.2 66.9

tsRNN 96.6 92.5 83.3 75.0

𝛿 = 0.15𝛿 = 0.10 𝛿 = 0.15 𝛿 = 0.10



RESULTS

14

Method SMT opt. SMT solo ENST solo ENST acc.
NMF-SAB  
[Dittmar and Gärtner 2014]

95.0 — — —

PFNMF  
[Wu and Lerch 2015] — 81.6 77.9 72.2

HMM 
[Paulus and Klapuri 2009]

— — 81.5 74.7

BDRNN  
[Southall et al. 2016] 

96.1 83.3 73.2 66.9

tsRNN 96.6 92.5 83.3 75.0

𝛿 = 0.15𝛿 = 0.10 𝛿 = 0.15 𝛿 = 0.10



RESULTS

15



16

Input

GRU1

GRU2

Output

Targets

Time ->



16

Input

GRU1

GRU2

Output

Targets

Time ->



16

Input

GRU1

GRU2

Output

Targets

Time ->



CONCLUSIONS

• Towards a generic end-to-end acoustic model for drum detection 
using RNNs 

• Data augmentation greatly improves generalization 

• Weighting loss functions helps to improve detection of difficult 
instruments 

• RNNs with label time shift perform equal to BDRNN  

• Simple RNN architecture performs better or similarly well as 
handcrafted techniques 
while using a smaller tolerance window (20ms)
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