

[†]ERICSSON TV and Media

I. Context & Objective	
 Recent MPEG Intra Coding tools 	• R
 Prediction use reconstructed samples 	0
 Context Adaptive Binary Arithmetic 	0
Coding (CABAC)	0
By design, these causal processes introduce	
Inter-Blocks Dependencies (see B.)	0
Context	
 Classical-RDO in Video Compression 	• PI
\circ Partition a frame F into blocks of pixels	0
 Common assumption: 	0
Each block <i>i</i> is <u>independent</u> from others	Ea
$\min_{\vec{p}} J(\vec{p}) \approx \sum_{i \in F} \min_{\vec{p}_i} J_i(\vec{p}_i)$	m Ţ
III. Proposed Joint RDO Models	
 Design of JRDO models is constrained 	
 Causal relationship between blocks 	
- Raster Scan order and Z-Scan order	
 Computational complexity may be intracta 	ble
- If \vec{p} can take K different values	
 If N blocks are optimized by group of M blocks 	ocks
- Complexity turns from (N, K) to $\left(\frac{N}{M}, K^{M}\right)$	
Increasing <i>M</i> is assumed to be more efficien terms of R-D cost, but also exponentially more	t in ore
complex	
 Application case 	
 Consider two cases: 	
- $M = 2$ (Dual-JRDO) and $M = 4$ (Quad-JR	DO)
 Optimize prediction mode parameter (i.e. 	\overrightarrow{p})
- HEVC: $K = 35$	
$[I] \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L}$	

INTER-BLOCK DEPENDENCIES CONSIDERATION FOR INTRA CODING IN H.264/AVC AND HEVC STANDARDS

M.Bichon^{+,*}, J.Le Tanou⁺, M.Ropert⁺, W.Hamidouche^{*}, L.Morin^{*}, L.Zhang^{*}

distortion propagation among all prediction modes (e.g. Vertical)

 $\{p_k^*\}_{k=i}^{i+3} = \arg\min_{(j) \in \mathbb{N}^{i+3}} \sum J_i(\{p_l\}_{l=i}^k)$

9 12 13 8 10 | 11 | 14 | 15

*INSA de Rennes (IETR)

Average BD-BR gains	JM19.0		HM16.6	
	Dual-JRDO	Quad-JRDO	Dual-JRDO	Quad-JRDO
Class B	-0.80%	-1.84%	-0.49%	-0.79%
Class C	-0.89%	-1.89%	-0.90%	-1.90%
Class D	-0.50%	-1.51%	-0.93%	-1.98%
Class E	-0.89%	-1.89%	-0.52%	-1.33%
AII	-0.77%	-1.78%	-0.71%	-1.47%
	 T	 T	 T	 T
Best Sequence	-1.37%	-3.10%	-1.31%	-2.31%
Worst Sequence	0.08%	-1.09%	-0.21%	-0.04%

- Achievable gains of dependencies consideration are exhibited
- Jointly optimizing prediction modes brings systematic and substantial bitrate savings
- **Future Work**
- Different coding parameters can be optimized: QP, partitioning, lambda, ...
- Extension to this work to temporal dependencies is envisaged

