

Robust Particle Filter by Dynamic Averaging of Multiple Noise Models

Bin Liu

Nanjing University of Posts and Telecommunications Email: bins@ ieee.org

> ICASSP 2017, New Orleans, USA March 5-9, 2017

Outline

> A Basic Framework of Particle Filter (PF)

- > The Proposed Robust Particle Filter (RPF) Algorithm
- Simulation Results
- > Conclusions

Problem

$$x_{k} = f(x_{k-1}) + u_{k}$$

$$p(x_{k} | x_{k-1}) \rightarrow \text{State transition prior}$$

$$y_{k} = h(x_{k}) + n_{k}$$

$$p(y_{k} | x_{k}) \rightarrow \text{Likelihood}$$

We are interested in
$$p(x_k | y_{0:k})$$
, where $y_{0:k} = \{y_i\}_{i=0}^k$

How to estimate $p(x_k | y_{0:k})$ online, in presence of measurement outliers ?

Bayes Filter

Predict: $p(x_k \mid y_{0:k-1}) = \int p(x_k \mid x_{k-1}) p(x_{k-1} \mid y_{0:k-1}) dx_{k-1}$ **Update:** $p(x_k \mid y_k, y_{0:k-1}) = \frac{p(y_k \mid x_k)}{p(y_k \mid y_{0:k-1})} p(x_k \mid y_{0:k-1})$ $p_{k|k} = \frac{p(y_k \mid x_k) \int p(x_k \mid x_{k-1}) p_{k-1|k-1} dx_{k-1}}{p(y_k \mid y_{0:k-1})}$ cumbersome, intractable integrals where $p_{k|k} = p(x_k | y_{0:k})$ **Solution:**

•Approximate representation \rightarrow particle filter

Bin Liu, ICASSP 2017

The basic idea uderlying PF

 $p(x) \rightarrow$ continuous probability distribution of interest (blue)

$$p(x) \approx \sum_{i=1}^{N} w^{i} \delta(x - x^{i})$$

blue) p(x) \downarrow x

where $p(x) \rightarrow$ probability distribution of interest (blue)

- $x^i \rightarrow$ the particles
- $W^{i} \rightarrow$ weights of the particles
- $\delta(\bullet) \rightarrow$ the Dirac delta function
 - $N \rightarrow$ number of particles

 $p(x) \approx \chi = \left\{ x^i, w^i \right\}_{i=1}^N$

 \rightarrow approximating random measure

A Basic Framework of PF

Starting from $p(x_{k-1} | y_{0:k-1}) \approx \chi_{k-1} = \left\{ x_{k-1}^i, w_{k-1}^i \right\}_{i=1}^N$

• Sampling step. Sample $x_k^i \sim q(x_k | x_{k-1}^i, y_{0:k})$

• Weighting step.

$$w_{k}^{i} = \frac{p\left(x_{k}^{i} | y_{0:k}\right)}{q\left(x_{k}^{i} | x_{k-1}^{i}, y_{0:k}\right)}, \text{ set } w_{k}^{i} = \frac{w_{k}^{i}}{\sum_{j=1}^{N} w_{k}^{j}}$$

• Resampling step. Sample $x_k^i \sim \sum_{j=1}^N w_k^j \delta\left(x - x_k^i\right)$, set $w_k^j = 1/N$

Output $p(x_k | y_{0:k}) \approx \chi_k = \left\{ x_k^i, w_k^i \right\}_{i=1}^N$ at time step k

PFs under model uncertainty

- if there is uncertainty on f, how to modify the PF to adapt it? [1]
- if there is uncertainty on h, how to modify the PF to adapt it? [2]

• if there is uncertainty in the measurement noise model, how

to modify the PF to adapt it?

 Liu, B., Instantaneous Frequency Tracking under Model Uncertainty via Dynamic Model Averaging and Particle Filtering, IEEE Trans. on Wireless Communications, vol.10, no.6, pp.1810-1819,2011.
 Dai, Y., Liu, B., Robust video object tracking via Bayesian model averaging based feature fusion, Optical Engineering, vol.55, no.8, pp.083102, 2016.

Outline

> A Basic Framework of Particle Filter

> The Proposed RPF Algorithm

- Simulation Results
- > Conclusions

Robustify PF by Employing Multiple Noise Models

Model the measurement noise n_k by M candidate models together

Model Averaging Strategy to Handle Multiple Models

• Bayesian Model Averaging to compute $p_{k|k} = p(x_k | y_{0:k})$

$$p_{k|k} = \sum_{m=1}^{M} p_{m,k|k} \pi_{m,k|k}$$

where

$$p_{m,k|k} \triangleq p(x_k | H_k = m, y_{0:k}) \text{ and } \pi_{m,k|k} \triangleq p(H_k = m | y_{0:k})$$

Perform PF under each model hypothesis

Starting from
$$p_{k-1|k-1} \approx \chi_{k-1} = \left\{ x_{k-1}^{i}, w_{k-1}^{i} \right\}_{i=1}^{N}$$

Sample $x_k^{'}$ from $q(x_k | x_{k-1}, y_{0:k})$; calculate its weight by

$$w_{m,k}^{i} \propto w_{k-1}^{i} p\left(x_{k}^{i} | x_{k}^{i-1}\right) p_{m}\left(y_{k} | x_{k}^{i}\right) / q\left(x_{k}^{i} | x_{k-1}^{i-1}, y_{0:k}\right)$$

Then we have

$$p_{m,k|k} \approx \chi_{m,k} = \left\{ x_k^i, w_{m,k}^i \right\}_{i=1}^N$$

Update the posterior prob. of each candidate model

Given $\pi_{m,k-1|k-1}$, we have

$$\pi_{m,k|k-1} = \frac{\pi_{m,k-1|k-1}^{\alpha}}{\sum_{m=1}^{M} \pi_{m,k-1|k-1}^{\alpha}},$$
(9)

where $\pi_{m,k|k-1} \triangleq p(\mathcal{H}_k = m|y_{0:k-1}).$

Then, employing Bayes' rule we have

$$\pi_{m,k|k} = \frac{\pi_{m,k|k-1}p_m(y_k|y_{0:k-1})}{\sum_{m=1}^M \pi_{m,k|k-1}p_m(y_k|y_{0:k-1})}, \quad (10)$$
where $p_m(y_k|y_{0:k-1}) = \int p_m(y_k|x_k)p(x_k|y_{0:k-1})dx_k.$ (11) \leftarrow cumbersome, intractable integral Solution: approximate it by:

$$p_m(y_k|y_{0:k-1}) \simeq \sum_{i=1}^N \omega_{k-1}^i p_m(y_k|\hat{x}_k^i).$$
(12)
Bin Liu, ICASSP 2017

The Proposed RPFAlgorithm

Starting from $p(x_{k-1} | y_{0:k-1}) \approx \chi_{k-1} = \left\{ x_{k-1}^{i}, w_{k-1}^{i} \right\}_{i=1}^{N}$

• Sampling step. Sample $x_k^i \sim q(x_k | x_{k-1}^i, y_{0:k})$

Set $w_k^i = 1/N$, i = 1, ..., N. **Output** $p(x_k | y_{0:k}) \approx \chi_k = \left\{ x_k^i, w_k^i \right\}_{i=1}^N$ at time step k

Outline

- > A Basic Framework of Particle Filter
- > The Proposed Robust Particle Filter Algorithm
- Simulation Results
- > Conclusions

Simulation Setting

 $x_{k+1} = 1 + \sin(0.04\pi \times (k+1)) + 0.5x_k + u_k, \quad (15)$

$$y_k = \begin{cases} 0.2x_k^2 + n_k, & k \le 30\\ 0.2x_k - 2 + n_k, & k > 30 \end{cases}$$
(16)

Case I: filtering without the presence of outliers

Case II: filtering with the presence of outliers

[3] R. Van Der Merwe, A. Doucet, N. De Freitas, and E. Wan, "The unscented particle filter," in NIPS, 2000, pp. 584–590

Algorithm Performance Comparison for case I

Algorithm	Time	MSE	
		mean	var
PF: Generic	1.561	0.350	0.056
PF: MCMC move step	3.275	0.371	0.047
EKPF	2.958	0.280	0.015
EKPF: MCMC move step	7.033	0.278	0.013
UPF	9.095	0.055	0.008
UPF: MCMC move step	19.735	0.052	0.008
the proposed RPF	5.509	0.018	0.0001

Table 1: Execution time (in seconds), Mean and variance of the MSE calculated over 30 independent runs for Case I.

Algorithm Performance Comparison for case II

Algorithm	MSE	
	mean	var
PF: Generic	0.533	0.040
PF: MCMC move step	0.523	0.039
EKPF	22.663	0.343
EKPF: MCMC move step	22.668	0.358
UPF	19.804	0.289
UPF: MCMC move step	19.808	0.274
the proposed RPF	0.357	0.010

Table 2: Mean and variance of the MSE calculated over 30 independent runs for Case II.

Parameter Sensitivity

Fig. 1: Mean of the MSE calculated over 30 independent runs, in case of different α values, for both Case I and II.

Simulation results

Averaged posterior probability of candidate models outputted by the proposed RPF method. The left and right sub-figures correspond to Case I and II, respectively.

Outline

> A Basic Framework of Particle Filter

> The Proposed RPF Algorithm

Simulation Results

> Conclusions

Conclusions

- A multi-model based PF method, which is shown to be robust against the presence of outliers in the measurements.
- The usage of a mixture of heavier tailed Student's t distributions and a Gaussian distribution shows promises in modeling the measurement noise in the context of robust state filtering.

• Simple, while highly efficient !

Future work: 1) consider uncertainties in *f*, *h*, and the model of *n_k* all together; possible usages of other types of mixing components;
3) real-life problems

Thanks for your attention!

Q & A

Bin Liu

Nanjing Univ. of Posts and Telecomm. Email: bins@ieee.org

Bin Liu, ICASSP 2017