End-to-End Joint Learning of Natural Language Understanding and Dialogue Manager

XUESONG YANG

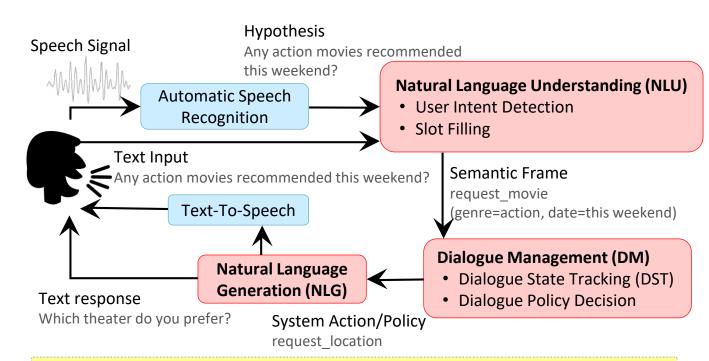
YUN-NUNG (VIVIAN) CHEN

DILEK HAKKANI-TÜR

Google

Paul Crook Xiujun Li Jianfeng Gao Li Deng

ICASSP 2017 March 9th HLT-L2: Spoken Language Understanding I xyang45@illinois.edu y.v.chen@ieee.org


What is a Dialogue System?

A dialogue system is a computer agent that interacts with human via natural languages.

[1] Zue, Victor W., and James R. Glass. "Conversational interfaces: Advances and challenges." Proceedings of the IEEE 88.8 (2000): 1166-1180.

Pipelined Task-Oriented Dialogue System

Motivation: The pipelined system (NLU \rightarrow DM) results in error propagation issues.

Proposed Approach

- End-to-end model
 - Mitigate the effects of noisy output from NLU
 - Refine NLU by supervised signals from DM
- Multi-task jointly learning
 - NLU User intent classification
 - NLU User slot tagging
 - DM System action prediction
- Contextual understanding
 - Access to the user history
 - Monitor user behavior states over turns

Human-Human Dialogue Interaction

Hi, how may I help you?

Are there any cheap rate hotels to put my bags?

Do you want to have a backpack type of hotel?

Yes. Just gonna leave our things there and stay out the whole day.

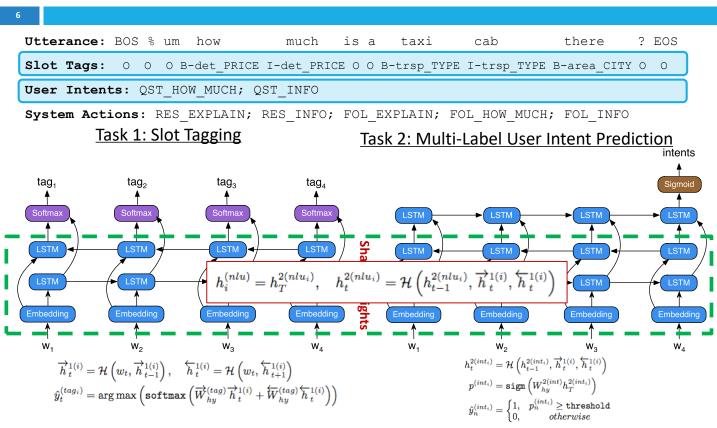
So you don't mind if it is not roomy, right?

Guide Agent

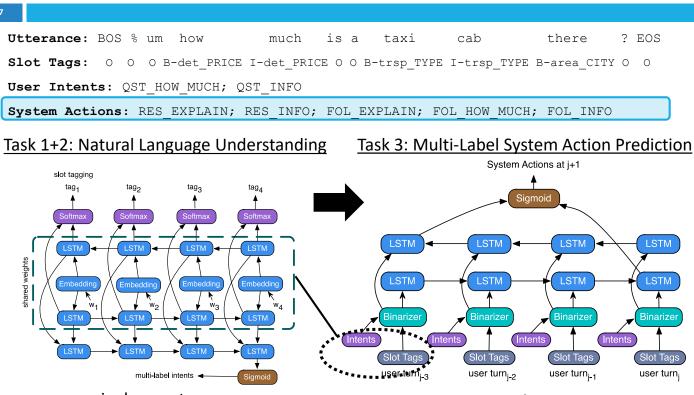
Okay. These hotels are available for you: ...

Yes.

Tourist User

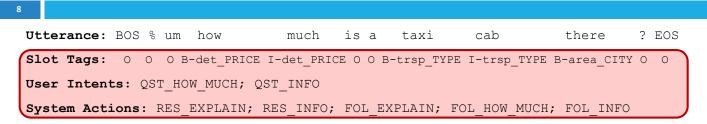

::

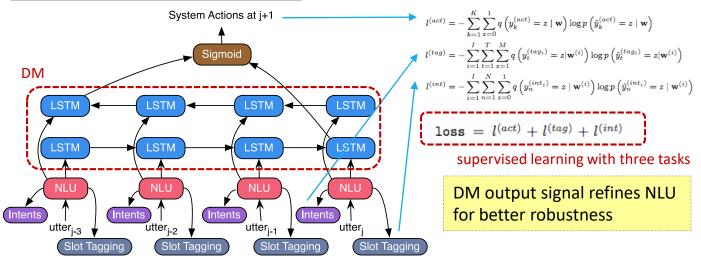
Ok, thank you, bye!


Thanks, goodbye.

Idea: predicting the next system action given the current user utterance together with the aggregated observations

Natural Language Understanding (NLU)


NLU+DM 1: Pipelined BLSTMs


single user turn

current user turn w/ contextual history

NLU+DM 2: End-to-End Model (JointModel)

Task 1+2+3: End-to-End Joint NLU+DM

Data

Dialogue State Tracking Challenge 4

 Human-human dialogues: 21-hour dialogue sessions on touristic information collected via Skype between tour guides and tourists

Domains	Speech Act	Speech Act Attributes			
Accommodation	QST (QUESTION)	АСК	CLOSING	COMMIT	THANK
Attraction	RES (RESPONSE)	CANCEL	CONFIRM	ENOUGH	WHAT
Food	INI (INITIATIVE)	EXPLAIN	HOW_MUCH	HOW_TO	WHEN
Shopping	FOL (FOLLOW)	INFO	NEGATIVE	OPENING	WHERE
Transportation		POSITIVE	PERFERENCE	RECOMMEND	WHO

User Intent = Speech Act + Attributes		Train	Dev	Test
System Action = Speech Act + Attributes	#utter	5,648	1,939	3,178
	#intent	68	54	58

DM Result – System Action Prediction (SAP)

Metric: frame-level accuracy (FrmAcc)

Model	FrmAcc		
Baseline (CRF+SVMs)	7.7		
Pipeline-BLSTM	12.0		
JointModel	22.8	-	-


Human-human conversations are complicated, so predicting system actions for DM is difficult

Pipeline-BLSTM and JointModel outperform the baseline

JointModel improves Pipeline-BLSTM about 10% accuracy, indicating the importance of mitigating downside of pipeline

DM Result – System Action Prediction (SAP)

Metric: frame-level accuracy (FrmAcc)

Oracle models show the upper-bound of the SAP performance, since it transfers the errors from NLU to SAP

Contextual user turns make significant contribution to DM performance

JointModel achieves the best DM performance (FrmAcc) with richer latent representations

NLU Result – Slot Filling & Intent Prediction

Metrics: frame-level accuracy (FrmAcc)

Models	Slot	Intent	NLU	
NLU-Baseline (CRF+SVM)	77.3	37.2	33.1	
NLU-Pipeline-BLSTM	76.8	40.0	36.4	
NLU-JointModel	76.5 ┥	42.2	37.4	

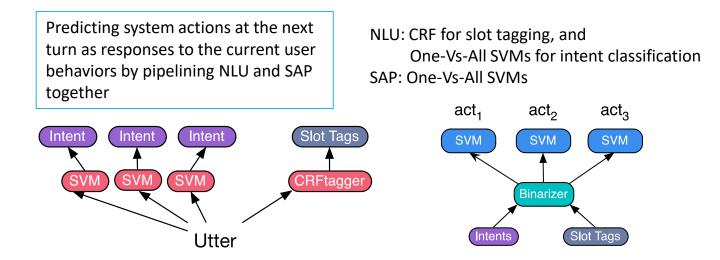
CRF+SVMs baseline maintains strong NLU performance with 33.1%

Pipeline-BLSTM and JointModel outperformed the baseline

Extra supervised DM signal helps refine the NLU by back-propagating the associated errors

DM signal (system action prediction) helps more on user intent prediction than slot filling, and NLU is significantly improved

Conclusion


- First propose an end-to-end deep hierarchical model for joint
 NLU and DM with limited contextual dialogue memory
- Leverage multi-task learning using three supervised signals
 - NLU: User intent classification
 - NLU: Slot tagging
 - DM: System action prediction
- Outperform the state-of-the-art pipelined NLU and DM models
 - Better DM due to the contextual dialogue memory
 - Robust NLU fine-tuned by supervised signal from DM

¹⁴ Thanks for Your Attention! ③

Code Available at

https://github.com/XuesongYang/end2end_dialog

Appendix - Baseline Model

[1] Raymond, Christian, and Giuseppe Riccardi. "Generative and discriminative algorithms for spoken language understanding." In *INTERSPEECH*, pp. 1605-1608. 2007.

Appendix: Configuration

- Optimizer: a mini-batch stochastic gradient descent method Adam
- Contextual history: five user turns
- Dimension of word embedding: 512
- Dropout ratio: 0.5
- No early stopping, but use 300 training epochs
- Best models for three tasks are selected individually under different metrics
 - Token-level micro-average F1 score is used for slot filling
 - frame-level accuracy (it counts only when the whole frame parse is correct) is used for both user intent prediction and system action prediction
 - the decision thresholds are tuned on dev set