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Introduction

I Physical structures:
Mississippi River Bridge (2007) Sampoong Department Store (1995)

I How to detect the damage that can be caused over
time by continuous use?

I Natural frequencies

I Mode shapes

I Damping ratios

I Uniform sampling
I Synchronous random sampling
I Asynchronous random sampling
I Random temporal compression
I Random spatial compression

Modal Expansion Theorem

I Second-order equations of motion for an N degree of

freedom linear system:

[M ]{ẍ(t)} + [C]{ẋ(t)} + [K]{x(t)} = {f (t)}

I Modal expansion with K active modes:

{x(t)} = [Ψ]{q(t)} =

K∑
k=1

{ψk}qk(t)

I Free vibration & no damping:
qk(t) = Ake

j2πfkt

Problem Formulation

I Analytic signal:

{x(t)} =

K∑
k=1

{ψk}Ake
j2πfkt

I Taking Nyquist samples at
T = {t1, t2, · · · , tM} = {0, Ts, · · · , (M − 1)Ts}.

I Data matrix:
[X] = [x(t1), x(t2), · · · , x(tM)]

=

K∑
k=1

Ak{ψk}a(fk)
> ∈ CN×M

with a(fk) := [ej2πfkt1, ej2πfkt2, · · · , ej2πfktM ]>.

Randomized Spatial Compression

ym = 〈[X](:,m), bm〉
= 〈[X]em, bm〉
= 〈[X], bme

H
m〉

1 ≤ m ≤M,

Atomic Norm Minimization

min
[X̂]
‖[X̂]‖A

s. t. ym = 〈[X̂], bme
H
m〉, 1 ≤ m ≤M.

I Atomic set: A = {ha(f )> : ‖h‖2 = 1}
I Atomic norm:

‖[X]‖A = inf {t > 0 : [X] ∈ t conv(A)}

= inf

{∑
k

ck : [X] =
∑
k

ckhka(fk)
>, ck ≥ 0

}
.

I Dual polynomial: Q(f ) = Ya(f )

Theoretical Guarantee

Theorem 1 [Yang, 2016]

Suppose we observe the data matrix [X] with the above random
spatial compression scheme. Assume that the random vectors bm are
i.i.d samples from an distribution with the isotropic and µ-incoherent
properties. Assume that the signs {ψk}(n)Ak

|{ψk}(n)Ak| are drawn i.i.d. from
the uniform distribution on the complex unit circle, and assume the
minimum separation∆f = mink 6=j |(fk − fj)Ts| ≥ 4

M−1. Then there exists
a numerical constant C such that

M ≥ CµKN log

(
MKN

δ

)
log2

(
MN

δ

)
is sufficient to guarantee that we can recover [X] via ANM and

localize the frequencies with probability at least 1− δ.

ANM-based Strategy vs. SVD-based Strategy

m1 m2 m3 m4 m5 m6
k1 k2 k3 k4 k5 k6 k7

Figure 1: Undamped box car system with m1 = 1, m2 = 2, m3 = 3, m4 = 4, m5 = 5, m6 = 6 kg, and the
stiffness values are k1 = k7 = 500, k2 = k6 = 150, k3 = k4 = k5 = 100 N/m.
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Figure 2: Uniform sampling: frequency localization from dual polynomial Q(f) in the box cars system.

Note that the true mode shapes here are not orthogonal to each other. Therefore, it’s obvious to see the
outperformance of ANM based algorithm from Fig. 4. Moreover, the MAC for AMN is (1, 1, 1, 1, 1, 1),
while the MAC for SVD is (0.8860, 0.6663, 0.7646, 0.9557, 0.9629, 0.9889), which verifies that the SVD based
algorithm fails to recover the true mode shapes when the mode shapes are not orthogonal. With some
simple calculations, we can get the minimum separation ∆f = 0.0054. Theorem 3.1 indicates that we need
M ≥ max{ 4

∆f
+ 1, 257} = max{741, 275} to get perfect recovery. However, this simulation does indicate

that our Theorem 3.1 is too strict and we do not need to use as many as 275 uniform samples to get perfect
recovery.

For convenience, we will use random mode shapes to test our ANM based algorithms in the following
experiments.

4.2 Asynchronous v.s. synchronous random sampling

In this experiment, we compare the performance of asynchronous and synchronous random sampling with
respect to correlated mode shapes, which are shown in Fig. 5 (Only the first two mode shapes are correlated).
The true frequencies are set as 2, 3 and 10 Hz. We use Nyquist rate to getM = 100 uniform samples from each
sensor. However, only M ′ samples are randomly observed from each sensor according to the asynchronous
scheme or synchronous scheme. M ′ ranges from 2 to 20. Note that M ′ = |ΩS | in the synchronous random
sampling. However, in the asynchronous random sampling, we use M ′ to denote the average number of
observed measurements from each sensor, i.e., M ′N = |ΩA|. Other parameters are set same as in Section
4.1. 100 trials are performed in this experiment. Fig. 6 shows that when compared with synchronous
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I Mass:
I Orthogonal: m1 = m2 = m3 = m4 = m5 = m6 = 1 kg.
I Non-orthogonal: m1 = 1, m2 = 2, m3 = 3, m4 = 4, m5 = 5, m6 = 6 kg.

I Stiffness: k1 = k5 = 200, k2 = k6 = 150, k3 = 100, k4 = 50, k7 = 200 N/m.

I M = 150, N = 6.
I # of measurements: SVD(M ×N), ANM(M).

ANM-based Strategy vs. SVD-based Strategy
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Frequency localization with dual polynomial.
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Orthogonal mode shapes.
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True Frequencies
Estimated Frequencies

The estimated frequencies.
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Non-orthogonal mode shapes.

M vs. K and N
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number of active modes is set as K = 3

Conclusions

I The recovery will be successful with high probability if the
number of time samples M is proportional to KN .

I ANM can achieve a better performance in recovering mode
shapes when compared with SVD (especially when the mode
shapes are not orthogonal).

I In future, we will
- take noise into consideration

- work on free vibration with damping and forced vibration
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