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1. Motivation \

Group sparsity or nonlocal image representation has shown great
potential in Image denoising. However, most of existing methods
only consider the nonlocal self-similarity (NSS) prior of noisy
Input 1mage, and thus the similar patches are collected only from
degraded input, which makes the quality of Image denoising
largely depend on the input itself. In this paper we propose a new
prior model for image denoising, called group sparsity residual
constraint (GSRC). Different from the most existing NSS prior-
based denoising methods, two kinds of NSS prior (i.e., NSS priors
of noisy input image and pre-filtered image) are simultaneously
used for image denoising. In particular, to boost the performance
of group sparse-based Image denoising, the concept of group
sparsity residual Is proposed, and thus the problem of image
denoising Is transformed into one that reduces the group sparsity
residual. To reduce the residual, we first obtain a good estimation
of the group sparse coefficients of the original Image by pre-
filtering and then the group sparse coefficients of noisy input
Image are used to approximate the estimation. To improve the
accuracy of the nonlocal similar patches selection, an adaptive
patch search scheme Is proposed. Moreover, to fuse this two NSS
priors better, an effective Iterative shrinkage algorithm Is
developed to solve the proposed GSRC model. Experimental
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Fig.4 Denoising images of Parrot by different methods ( ¢=100). (a) Ground Truth; (b) Noisy image; (c) NCSR
(PSNR= 24.36dB): (d) (PSNR= 23.54dB); (¢) LINC (PSNR= 24.46dB); (f) MS-EPLL (PSNR= 24.38dB): ()
AST-NLS (PSNR= 24.81dB); (h) WNNM (PSNR= 24.94dB); (i) GSRC-BM3D (PSNR= 25.17dB); (j) GSRC-
EPLL (PSNR = 25.14dB).

Figl. Flowchart of image denoising by group sparsity remdual constramt (GSRC) model
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Due to the influence of noise, it Is very difficult to estimate the true
group sparse code B from noisy imagey . In other words, the group
sparse code Aobtained by solving (2) is expected to be close enough
to the true group sparse code Bof the original image x. Thus, the
quality of image denoising largely depends on the level of the group
sparsity residual R, we define
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be calculated as

solve Eq. (4). In the t-iteration, the proposed shrinkage operator can
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