Polyphonic Piano Note Transcription with Non-negative Matrix Factorization of Differential Spectrogram

Lufei Gao*, Li Su[†], Yi-Hsuan Yang[†], Tan Lee^{*}

*Department of Electronic Engineering, The Chinese University of Hong Kong [†]Academia Sinica, Taiwan

Highlights

Note-level music transcription of pitched percussive instruments

- ► Investigate the idea of highlighting local energy increase in the TF representation;
- Propose algorithms based on existing NMF based methods;
- ► Validate the advantages of the differential spectrogram.

Baseline Methods

Standard NMF (NMF)

 \triangleright Approximate the STFT X_{ft} as the product of two non-negative matrices:

Model Adaptation with Differential Spectrogram

 \blacktriangleright Convolutional NMF adaptation (CNMF- Δ): The following model is utilized to estimate the note activation.

$$\widehat{X}_L(f,t)\simeq \widehat{V}_{ft} = \sum_{k=1}^{K} \widehat{W}_{fk} \sum_{ au=t-T_t}^{t+T_t} \widehat{H}_{k au} \widehat{P}(t- au).$$

Convolving $\widehat{\mathbf{H}}$ with $\widehat{\mathbf{P}}$ yields the attack activation denoted by $\widehat{\mathbf{H}}^{a}$.

► Model initialization (CNMF-AD- Δ): Initialize $\widehat{\mathbf{H}}$ by \mathbf{H} whihe is estimated using CNMF-AD before the estimation with differential spectrogram.

Experiment setting

$$X_{ft} \simeq V_{ft} = \sum_{k=1}^{\infty} W_{fk} H_{kt}$$

W is the template of single-note spectra; **H** is the time-varying activation.

- \triangleright The distortion $D(\mathbf{X}|\mathbf{V})$ is measured by the β -divergence.
- Attack/Decay Convolutional NMF (CNMF-AD)
- $> X_{ft}$ is assumed to be the summation of the attack phase and the decay phase. The model is defined as

$$V_{ft} = \sum_{k=1}^{K} W_{fk}^{a} \sum_{ au=t-T_{t}}^{t+T_{t}} H_{k au} P(t- au) + \sum_{k=1}^{K} W_{fk}^{d} \sum_{ au=1}^{t} H_{k au} e^{-(t- au) \alpha}$$

 \mathbf{W}^{a} is the percussive template for the attack phase; \mathbf{W}^{d} is the harmonic template for the decay phase; **P** and α_k are the transient pattern and the exponential decay rate, respectively.

- For dictionary construction
 - The 88 forte isolated note recordings in MAPS-ENSTDkCl.
- ▷ For testing tasks
 - ► The first 30-second excerpt of the 30 music pieces from MAPS-ENSTDkCl.
- ▶ Metric: Precision \mathcal{P} , Recall \mathcal{R} , F-measure \mathcal{F} , Accuracy \mathcal{A} .

Results: System settings

Differential Spectrogram

Assuming that the intrument exhibits harmonics with locally stable frequencies, the differential spectrogram $\widehat{X}_L(f, t)$ is defined as:

 $\widehat{X}_{L}(f,t) = \mathsf{HWR}(|X(f,t+L)| - |X(f,t)|)$

HWR stands for the half-wave rectification (HWR(x) = $\frac{x+|x|}{2}$).

Table: Performance comparison on "ENSTDkCI"				
Method	Ρ	R	F	A
NMF ($\beta = 0.5$)	59.70	34.51	41.81	27.24
NMF- Δ ($\beta = 0.5$)	71.04	42.48	50.70	35.13
NMF ($\beta = 2$)	51.67	43.11	46.34	30.54
NMF- Δ (β = 2)	67.83	58.21	61.76	45.10
$CNMF-\Delta$	82.11	86.57	83.98	73.39
$CNMF-AD-\Delta$	83.38	87.34	85.06	74.94
CNMF-AD	89.22	78.35	82.91	71.55
Böck	—	—	—	68.70
Berg-Kirkpatrick	78.10	74.70	76.40	

Result Analysis

The attack activations of note E4 in one test file.

 $\triangleright \widehat{\mathbf{H}}^a$ of CNMF- Δ

5 8 6 Time (second) (c) Red: SF_{L=1}(t); black: SF_{L=4}(t); blue: $\sum_{f} |X(f, t)|$.

Model Adaptation with Differential Spectrogram

Standard NMF adaptation (NMF- Δ): The following feature is used to replace **X** in the model:

$$\widetilde{X}_L(f,t) = c_1 X(f,t) + c_2 \widehat{X}_L(f,t),$$

The piano rolls of attack activations of our methods

Time

 $(\widehat{\mathbf{H}}^{a})^{0.3}$ of CNMF-AD- Δ