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Motivation
•Detecting a signal of unknown power in white noise of unknown power is a

fundamental problem in signal processing.

• In order to detect the signal, both noise and signal power have to be estimated
either directly or indirectly.

•The classic approach is to formulate the problem either as a detection problem
under uncertainty or an estimation problem with a subsequent detection step.

• Such hierarchical procedures can typically not be guaranteed to meet con-
straints on both the detection and estimation performance and often require a
large number of samples to work reliably.

•The proposed approach is to solve the detection and estimation problem
jointly and sequentially such that both performance constraints are met and
the expected number of required samples is minimized.

Problem Formulation
Signal model:

x[n] = s[n] + w[n], n = 1, 2, . . . ,

s[n] : signal → zero mean i.i.d. Gaussian with unknown variance σ2s ≥ 0
w[n] : noise → zero mean i.i.d. Gaussian with unknown variance σ2w > 0

Signal-to-noise ratio (SNR):

θ =
σ2s
σ2w
, θmin : minimum SNR for reliable detection

Hypothesis test: {
H0 : θ = 0 (signal absent)
H1 : θ ≥ θmin (signal present)

Constrained optimization problem:

min
ψ,δ,θ̂

Eθ∗[N ] subject to P0(δN = 1) ≤ α (1)

Pθ(δN = 0) ≤ β(θ) ∀θ ≥ θmin (2)

Eθ
[
(θ̂N − θ)2

]
≤ γ(θ) ∀θ ≥ θmin (3)

N : number of samples at stopping time
θ̂n : estimator for θ after the nth sample
θ∗ : nominal SNR value

ψn, δn stopping and decision rule after the nth sample → ψn, δn ∈ {0, 1}

Assumption:
•Knowledge of a sequence of noise-only realizations w̃1, w̃2, . . ..
•Either recorded before performing the test, or generated on a secondary sensor.

Solution Methodology
1. Transform the two sequences x[n] and w̃[n] to a single sequence of Bernoulli

random variables whose success probability is determined by the true SNR.

2. Perform sequential joint detection and estimation on the Bernoulli sequence.

Transformation to a Bernoulli Sequence
Birnbaum’s procedure [1]: Sequentially transforms the two Gaussian sequences
x[n] and w̃[n] into a sequence of i.i.d. Bernoulli random variables

b[m], m ≥ 1 with success probability ρ =
1

θ + 2
.

Reformulated hypothesis test:

{
H0 : ρ = 0.5 (signal absent)
H1 : ρ ≤ ρmax (signal present)

Joint Detection and Estimation
•Reformulate the optimization problem in terms of ρ instead of θ.
•Relax constraints to hold on discrete set of SNR values P = {ρ1, . . . , ρK}.
•The constrained problem can be solved via its Lagrange dual [2]

– minimize with respect to the primal variables → dynamic programming
– maximize with respect to the dual variables → convex optimization

Lagrange multipliers: (1) → λ0, (2) → λk, (3) → µk, k = 1, . . . , K

Sufficient test statistic: observed number of 0s and 1s in b[m] → m0,m1

Likelihood-ratios under P0 and Pρk with respect to Pρ∗:

Zm0,m1

0 =

(
0.5

1− ρ∗

)m0
(
0.5

ρ∗

)m1

, Zm0,m1

k =

(
1− ρk
1− ρ∗

)m0
(
ρk
ρ∗

)m1

Optimal decision rule: δ∗m0,m1
=

{
1, λ0Z

m0,m1

0 ≤ Em0,m1

λ

0, λ0Z
m0,m1

0 > Em0,m1

λ

Optimal stopping rule: ψ∗
m0,m1

=

{
1, Gm0,m1

= Rm0,m1

0, Gm0,m1
> Rm0,m1

Optimal estimator: θ̃∗m0,m1
=
Em0,m1

µ,1

Em0,m1

µ,0

where

Em0,m1

λ =

K∑
k=1

λkZ
m0,m1

k , Em0,m1

µ,i =

K∑
k=1

ρ−ik µkZ
m0,m1

k

Gm0,m1
= min [λ0Z

m0,m1

0 , Em0,m1

λ ] + Em0,m1

µ,2 −
(Em0,m1

µ,1 )2

Em0,m1

µ,0

Rm0,m1
= min [Gm0,m1

, 1 + ρ∗Rm0,m1+1 + (1− ρ∗)Rm0+1,m1
]

Experimental Results
SNR grid: P = {−3 dB,−2 dB, . . . , 10 dB}, θ∗ = 3 dB
Error Prob. constrains: α = β(θ) = 0.05

MSE constraints: relative MSE bounded by constant c → γ(θ) = cθ2

Monte Carlo runs: 10 000
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• Solution is sparse → most of the
performance constraints are inactive.

• Few constrains are sufficient to bound
the performance over large intervals.

Type II Error Probabilities
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•Constraints are met for all SNR val-
ues in the feasible interval.

• For most SNR values the detection
constraint are inactive.

Relative MSE

−3−2−1 0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

SNR in dB

c = 0.25
c = 0.1

•Constraints are met for all SNR val-
ues in the feasible interval.

• For c = 0.1, MSE constraints domi-
nate, i.e., hold with equality.

Average Sample Number
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•ASNs for both cases are high for low
SNRs and decrease for higher SNRs.

•Number of samples drawn from x[n]
stays almost constant for large SNRs.
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