Blind Image Deconvolution Using Student's-t Prior With Overlapping Group Sparsity

INTRODUCTION

BLIND IMAGE DECONVOLUTION PROBLEM

Unknown noise

GOAL: Given **y** recover both **x** and **h**

Observed image

Unknown Unknown true image blur kernel

BAYESIAN FORMULATION

 $p(h) \propto 1$

 $p(x,h|y) \propto p(y|x,h)p(x)p(h)$ POSTERIOR of x, h

 $p(y | x, h) = N(y | Hx, \sigma^2 I)$ LIKELIHOOD assuming white Gaussian noise

KERNEL PRIOR, we choose the flat prior

nations of **x** and **h** exist

p(x)**IMAGE PRIOR**, main topic of this paper!

STUDENT'S-T IMAGE PRIOR

SPARSE IMAGE PRIOR

Natura

image

 $g_m = F_m x$

log coefficients

KNOWLEDGE: when high-pass filters are applied to natural images, the resulting coefficients are sparse.

IMAGE PRIOR: $p(F_m x)$ is traditionally set to sparsity-enforcing priors (ex. total variation, hyper-Laplacian, and Student's-t).

STUDENT'S-T PRIOR

 $p(x, \gamma) \propto p(x \mid \gamma) p(\gamma)$ $\propto \prod_{m=1}^{m} N(x \mid 0, (F_m^T \Gamma F_m)^{-1}) \times \prod_{m=1}^{m} \prod_{m=1}^{m} \operatorname{Gamma}(\gamma_{m,i} \mid \alpha, \beta)^{-1}$

We use a hierarchical image prior: $p(F_m x_i | \gamma_{m,i}) \sim \text{Gaussian with precision } \gamma$ $p(\gamma_{m,i}) \sim \text{Gamma distribution with } \alpha, \beta.$ Marginalization w.r.t γ is equivalent to Student's-t

DERIVATION OF OBJECTIVE

MAP estimation is equivalent to minimizing the negative log posterior.

$$\min_{x,\gamma,h} -\log p(x,\gamma,h \mid y)$$

$$= \min_{x,\gamma,h} -\log p(y \mid x,h) p(x,\gamma) p(h)$$

$$= \min_{x,\gamma,h} -\log(p(y \mid x,h)) - \log(p(x,\gamma)) - \log(p(h))$$

$$= \min ||Hx - y||^2 + \lambda_1 \psi(x,\gamma)$$

here
$$\psi(x, \gamma) = \sum_{m=1}^{M} x^{T} F_{m}^{T} \Gamma(\gamma_{m,i}) F_{m} x + 2 \sum_{m=1}^{M} \sum_{i=1}^{N} ((1-\alpha) \log x)$$

 $\psi(x, \gamma)$ is regularization term obtained from Student's-t prior promoting sparsity. However, it dose not take account the structural information among the coefficients.

ICASSP 2017. New Orleans, Louisiana,

Dept. of Computer Science and Engineering, Seoul National University, Seoul, South Korea

OVERLAPPING GROUP SPARSITY

STRUCTURED INFORMATION

HARD: infinitely many possible combi

We need to set priors on them...

 $g\gamma_{m,i}+\beta\gamma_{m,i})$

If we look at **the coefficients** carefully, we can see that they are not really isolated.

Instead, they tend to group together.

OVERLAPPING GROUP SPARSITY

To capture this property, we define $\tilde{s}_{(i,i),W}$: a group of $W \times W$ contiguous samples centered at coordinates (i, j).

Then, overlapping group sparsity (OGS) functional is $\varphi_{OGS}(s) = \sum_{i=1}^{n} \|\tilde{s}_{(i,j),W}(:)\|_{2}$

FINAL PROBLEM FORMULATION

$\min_{x,\gamma,h}(R(x))$	$ = Hx - y ^{2} + \lambda_{1}\psi(x,\gamma) + \lambda_{2}\phi(x) $
where	$\phi(x) = \sum_{m=1}^{M} \varphi_{OGS}(F_m x)$

If set W = 1, $\phi(x)$ is commonly used anisotropic TV prior.

If set W > 1, $\phi(x)$ is a group sparsity regularization term (or generalized TV).

INFERENCE

MAJORIZATION-MINIMIZATION

$$G(x, x') = || Hx - y ||^{2} + \lambda_{1} \psi(x, \gamma) + \lambda_{2} \phi'(x, x')$$

$$\geq R(x) = || Hx - y ||^{2} + \lambda_{1} \psi(x, \gamma) + \lambda_{2} \phi(x)$$
where $\phi'(x, x') = \sum_{m=1}^{M} x^{T} F_{m}^{T} \Lambda(F_{m} x') F_{m} x$
and $[\Lambda(u)]_{l,l} = \sum_{i,j=-(W-1)/2}^{W/2} \left[\sum_{k_{1},k_{2}=-(W-1)/2}^{W/2} |u_{(r-i+k_{1},t-j+k_{2})}|^{2} \right]^{-\frac{1}{2}}$

To efficiently solve the opt-problem, we iteratively **minimize an upper-bound** G(x,x') instead of minimizing R(x). x' is the estimation of x at the previous iteration.

Equation for $[\Lambda(u)]_{l,l}$ looks terrifying but it's pretty simple in matlab.

 $\Lambda(F_m x)$ = imfilter(1./sqrt(imfilter(dx.^2, boxfilt)), boxfilt)

BLIND DECONVOLUTION ALGORITHM

1. $g_{m,i}^{(t)} = F_m x^{(t)}, \gamma_{m,i}^{(t+1)} = (\alpha + 1/2)/(\beta + (1/2)(g_{m,i}^{(t)})^2)$ 2. $x^{(t+1)} = ((H^T H)^{-1} + \sum_{m=1}^{M} (F_m^T \left(\lambda_1 \Gamma \left(\gamma_{m,i}^{(t)} \right) + \lambda_2 \Lambda \left(g_{m,i}^{(t)} \right) \right) F_m)^{-1}) H^T y$ 3. $h^{(t+1)} = (X^T X)^{-1} X^T y$ 4. t = t + 15. Go back to 1 until *x* converges (or *t* < max-iteration)

In S. Jeon, Deokyung Kang, Suk I. Yoo

(get dx and update γ)

(update x)

(update *h*)

(iteratively)

Algorithm evaluation is based on the dataset from Levin et al. The dataset is made of 4 images of size 255x255 pixels blurred with 8 different blur kernels.

Algorithm	SSD Avg. Error	Std. SSD Error	Avg. SSD Ratio	001 Ratic
Levin et al.	56.43	11.55	3.40	B wold s
Babacan et al.	67.72	63.21	3.64	f Image 04
Perrone et al.	36.42	11.69	2.24	entage o
Ours	31.84	5.20	1.93	

SSD, sum of squared distance between the recovered images and the ground truth images, measures the quality of recovered images.

SSD ratio (Levin et al.), $\sum_{i=1}^{N} (x_i^L - x_i^G)^2 / \sum_{i=1}^{N} (x_i^H - x_i^G)^2$, measures the effectiveness of estimated blur kernels.

 $(x_i^G: \text{ground truth}, x_i^L: \text{deconvolution w/ estimated kernel}, x_i^H: \text{deconvolution w/ true kernel})$

CONCLUSION

- In this paper, we presented a blind image deconvolution algorithm combining Student's-t image prior and the overlapping group sparsity (OGS).
- To the best of our knowledge, this is the first work that the structured group sparsity is employed to solve the "blind" image deconvolution problem.

REFERENCE

[1] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, "Efficient marginal likelihood optimization in blind deconvolution," in CVPR 2011

[2] S. D. Babacan, R. Molina, and M. N. Do, "Bayesian blind deconvolution with general sparse image priors," in ECCV, 2012.

[3] D. Perrone and P. Favaro, "A logarithmic image prior for blind deconvolution," Int. J. Comput Vis., 2015.

SSD Error Ratios

 \leftarrow Levin et al.

-Babacan et al.

Perrone et al.

