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INTRODUCTION

STUDENT’S-T IMAGE PRIOR

OVERLAPPING GROUP SPARSITY EXPERIMENT

INFERENCE

Algorithm SSD Avg.

Error

Std. SSD

Error

Avg. SSD

Ratio

Levin et al. 56.43 11.55 3.40

Babacan et al. 67.72 63.21 3.64

Perrone et al. 36.42 11.69 2.24

Ours 31.84 5.20 1.93

BLIND IMAGE DECONVOLUTION PROBLEM
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GOAL: Given y recover both x and h

HARD: infinitely many possible combi

nations of x and h exist

We need to set priors on them...y x h

BAYESIAN FORMULATION
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IMAGE PRIOR, main topic of this paper!

SPARSE IMAGE PRIOR

STUDENT’S-T PRIOR
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KNOWLEDGE: when high-pass filters are 

applied to natural images, the resulting 

coefficients are sparse.

IMAGE PRIOR: 𝑝(𝐹𝑚𝑥) is traditionally set to 

sparsity-enforcing priors (ex. total variation, 

hyper-Laplacian, and Student’s-t). 
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We use a hierarchical image prior:

𝑝(𝐹𝑚𝑥𝑖|𝛾𝑚,𝑖) ~ Gaussian with precision 𝛾

p(𝛾𝑚,𝑖) ~  Gamma distribution with 𝛼, 𝛽. 

Marginalization w.r.t 𝛾 is equivalent to Student’s-t 
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DERIVATION OF OBJECTIVE
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MAP estimation is equivalent to minimizing the negative log posterior.

POSTERIOR of x, h
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𝝍(𝒙, 𝜸) is regularization term obtained from 

Student’s-t prior promoting sparsity.

However, it dose not take account the 

structural information among the coefficients.

STRUCTURED INFORMATION

If we look at the coefficients carefully, we 

can see that they are not really isolated.

Instead, they tend to group together.

OVERLAPPING GROUP SPARSITY

CONCLUSION

sliding

 𝑠 𝑖,𝑗 ,𝑊

 𝑠 𝑖+1,𝑗+1 ,𝑊

To capture this property, we define  𝑠 𝑖,𝑗 ,𝑊: a 

group of 𝑊 ×𝑊 contiguous samples centered 

at coordinates 𝑖, 𝑗 .

Then, overlapping group sparsity (OGS) 

functional is 
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FINAL PROBLEM FORMULATION
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If set W = 1, 𝜙(x) is commonly used 

anisotropic TV prior. 

If set W > 1, 𝝓(x) is a group sparsity 

regularization term (or generalized TV).

 In this paper, we presented a blind image deconvolution algorithm combining 

Student’s-t image prior and the overlapping group sparsity (OGS).

 To the best of our knowledge, this is the first work that the structured group sparsity is 

employed to solve the “blind” image deconvolution problem.

MAJORIZATION-MINIMIZATION

REFERENCE

To efficiently solve the opt-problem, we 

iteratively minimize an upper-bound 

G(x,x’) instead of minimizing R(x). x’ is the 

estimation of x at the previous iteration.

Equation for [Λ(𝑢)]𝑙,𝑙 looks terrifying but it’s 

pretty simple in matlab. 

Λ 𝐹𝑚𝑥
= imfilter(1./sqrt(imfilter(dx.^2, boxfilt)),boxfilt)
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BLIND DECONVOLUTION ALGORITHM

1. 𝑔𝑚,𝑖
(𝑡)
= 𝐹𝑚𝑥

(𝑡), 𝛾𝑚,𝑖
(𝑡+1)

= (𝛼 + 1/2)/(𝛽 + 1/2 𝑔𝑚,𝑖
𝑡

2
) (get dx and update 𝛾) 

2. 𝑥(𝑡+1) = ((𝐻𝑇𝐻)−1 +  𝑚=1
𝑀 (𝐹𝑚

𝑇 𝜆1Γ 𝛾𝑚,𝑖
𝑡

+ 𝜆2Λ 𝑔𝑚,𝑖
𝑡

𝐹𝑚)
−1)𝐻𝑇𝑦 (update x)

3. ℎ(𝑡+1) = (𝑋𝑇𝑋)−1𝑋𝑇𝑦 (update h)

4. t = t + 1 

5. Go back to 1 until x converges (or t < max-iteration)                    (iteratively) 

Algorithm evaluation is based on the dataset from Levin et al. The dataset is made of 4 

images of size 255x255 pixels blurred with 8 different blur kernels.

SSD, sum of squared distance between the recovered images and the ground truth 

images, measures the quality of recovered images.

SSD ratio (Levin et al.),   𝑖=1
𝑁 (𝑥𝑖

𝐿 − 𝑥𝑖
𝐺)2/ 𝑖=1

𝑁 (𝑥𝑖
𝐻 − 𝑥𝑖

𝐺)2, measures the effectiveness 

of estimated blur kernels.

(𝑥𝑖
𝐺 :ground truth, 𝑥𝑖

𝐿 :deconvolution w/ estimated kernel, 𝑥𝑖
𝐻 :deconvolution w/ true kernel) 
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