

Emotion recognition through integrating EEG and peripheral physiological signals

Yangyang Shu and Shangfei Wang

Emotion Recognition through Integrating EEG and Peripheral Physiological Signals

- Motivation
- Method
- Experiments
- Conclusion

Emotion Recognition through Integrating EEG and Peripheral Physiological Signals

- Motivation
- Method
- Experiment
- Conclusions

University of Science and Technology of China

Focus: The inherent dependencies among multiple physiological signals are crucial for multimodal emotion recognition.

Current approaches:

 Feature-level fusion — concatenating features from multiple physiological signals into one feature vector
 Decision-level fusion — combine emotion classifiers from each modality through decision strategies

Our method:

♦ We propose to use restricted Boltzmann machine (RBM) to model the inherent dependencies among multiple physiological signals.

Why use RBM?

high-order dependencies among visible variables by introducing ⁴ hidden nodes;

Assumption: all channels of data are always available.

In fact, physiological signals are often corrupted due to artifacts.

Our method:

Other than discarding all the data instances containing invalid modalities, which results in a substantial amount of unusable data, we use all the complete and incomplete instances by treat the missing data in the same way as the other parameters.

- Motivation
- Method
- Experiments
- Conclusions

Method: Relation Modeling using a multimodal RBM for complete data

$$E(V^{E}, V^{P}, h|\theta) = \sum_{i=1}^{D^{E}} \frac{(v_{i}^{E} - b_{i}^{E})^{2}}{2(\sigma_{i}^{E})^{2}} + \sum_{i=1}^{D^{P}} \frac{(v_{i}^{P} - b_{i}^{P})^{2}}{2(\sigma_{i}^{P})^{2}} - \sum_{i=1}^{D^{E}} \sum_{j=1}^{nhidden} \frac{v_{i}^{E}}{\sigma_{i}^{E}} W_{ij}^{E} h_{j} - \sum_{i=1}^{D^{P}} \sum_{j=1}^{nhidden} \frac{v_{i}^{P}}{\sigma_{i}^{P}} W_{ij}^{P} h_{j} - \sum_{j=1}^{nhidden} b_{j}^{h} h_{j}$$
(1)

Joint distribution over visible units:

$$P(V^E, V^P|\theta) = \frac{1}{Z(\theta)} \sum_{H} exp(-E(V^E, V^P, h|\theta)), \quad (2)$$

Derivative of the log-likelihood respect to W^E and W^P

$$\frac{1}{N}\sum_{n=1}^{N}\frac{\partial log P(V_{n}^{E}, V_{n}^{P}; \theta)}{\partial W_{ij}^{E}} = E_{P_{data}} \begin{bmatrix} v_{i}^{E}\\ \sigma_{i}^{E} h_{j} \end{bmatrix} - E_{P_{model}} \begin{bmatrix} v_{i}^{E}\\ \sigma_{i}^{E} h_{j} \end{bmatrix}$$
(3)
$$\frac{1}{N}\sum_{n=1}^{N}\frac{\partial log P(V_{n}^{E}, V_{n}^{P}; \theta)}{\partial W_{ij}^{P}} = E_{P_{data}} \begin{bmatrix} v_{i}^{P}\\ \sigma_{i}^{P} h_{j} \end{bmatrix} - E_{P_{model}} \begin{bmatrix} v_{i}^{P}\\ \sigma_{i}^{P} h_{j} \end{bmatrix}$$
(4)

♦ Contractive divergence is adopted for parameter learning.

♦ Hidden layer is feature representations, and the input of SVM classifier

Method: Relation Modeling using a multimodal RBM for incomplete data

 \diamond Learning RBM using complete data

Fine tuning RBM using both incomplete data and complete data

 \diamond The missing values are treated as the same way as the model parameters to be updated each time

$$v_i^t = v_i^{t-1} + \Delta v_i^t = v_i^{t-1} + \epsilon \left(\frac{\partial F}{\partial \hat{v}_i^{t-1}} - \frac{\partial F}{\partial v_i^{t-1}}\right) \tag{5}$$

$$e^{-F(V^E, V^P|\theta)} = \sum_{h} e^{-E(V^E, V^P, h|\theta)}$$
(6)

Algorithm 1 Training RBM with incomplete data

Require: training data (v^E, v^P) , learning rate λ **Ensure:** the parameters $\theta = {\mathbf{b}, \sigma, \mathbf{W^E}, \mathbf{W^P}}$. Initialize the parameters θ with complete data Initialize the missing value randomly

repeat

for each training instance
$$(v^E, v^P)$$
 do
 $\hat{h}_j \leftarrow g(\sum_{i=1}^{D^E} W_{ij}^E \frac{v_i^E}{\sigma_i^E} + \sum_{i=1}^{D^P} W_{ij}^{(P)} \frac{v_i^P}{\sigma_i^P} + b_j^h)$
 $h_j \sim g(\sum_{i=1}^{D^E} W_{ij}^E \frac{v_i^E}{\sigma_i^E} + \sum_{i=1}^{D^P} W_{ij}^{(P)} \frac{v_i^P}{\sigma_i^P} + b_j^h)$
 $\hat{v}^E \leftarrow P(v^E|h)$
 $\hat{v}^P \leftarrow P(v^P|h)$

end for

update θ with Eq.3

for each missing value v_i do

$$v_i^t = v_i^{t-1} + \Delta v_i^t = v_i^{t-1} + \epsilon \left(\frac{\partial F}{\partial \hat{v}_i^{t-1}} - \frac{\partial F}{\partial v_i^{t-1}}\right)$$

end for until Convergence

Emotion Recognition through Integrating EEG and Peripheral Physiological Signals

- Motivation
- Method
- Experiments
- Conclusion

Experiments: Experimental Conditions

Databases

♦ MAHNOB-HCI database: 533
 Five physiological signals: EEG, ECG, GSR, RESP, TEMP
 Valence: 289 positive, 244 negative
 Arousal: 268 positive, 265 negative

 ♦ DEAP database: 1216
 Seven physiological signals: EEG, EOG, EMG, ECG, GSR, RESP, TEMP and PLET,
 Valence: 672 positive, 544 negative
 Arousal: 726 positive, 490 negative

Experiments: Experimental Conditions

Features

♦EEG features

- Power spectrum
- Power spectrum asymmetry between pairs of electrodes.

♦Peripheral features

Signal	Extracted features	filters]						
EOG	Energy, mean and variance	0.4Hz	1 г		Pand anarry ratio avarage respiration				
EMG	Energy, mean and variance	1Hz	1		Band energy ratio, average respiration				
	HRV, root mean square of the mean		1		signal, mean of the derivative, standard				
	squared difference of successive beats,			RSP	derivation, range of greatest breath,	0.45Hz			
	standard deviation of beat interval		10 spectral powers within 0-2.4Hz.						
ECG	change per respiratory cycle, 14 spectral				average and median peak to peak time				
	power in the bands from [0, 1.5]Hz, low	1Hz			Mean mean of the derivative encetral				
	frequency [0.01, 0.08]Hz, medium			TEMP	Mean, mean of the derivative, spectral	3Hz			
	frequency [0.08, 0.15]Hz and high				powers in 0-0.1 Hz and 0.1-0.2 Hz				
	frequency [0.15, 0.5]Hz components of		ΙΓ		Average and standard derivation of HRV				
	HRV power spectrum, Poincare analysis				and inter-beat intervals energy ratio				
ļ	features(2 features)[1]				between 0.04.0.15 Hz and 0.15.0.5 Hz				
	Mean, mean of the derivative, mean of			PLET	between 0.04-0.15 Hz and 0.15-0.5 Hz,	0.45Hz			
COD	the positive derivatives, proportion of	211-			spectral power in 0.1-0.2 Hz, 0.2-0.3 Hz,				
GSK	negatives in the derivative, number of	3HZ			0.3-0.4 Hz, 0.01-0.08 Hz, 0.08-0.15 Hz				
	0.2 4Uz				and 0.15-0.5 Hz components of HRV				
	0-2.4HZ		JL		and one one the components of the				

Experiments: Experimental Conditions

\diamond For complete data:

- Emotion recognition from peripheral signals: RBM+SVM+peripheral, SVM+peripheral
- Emotion recognition from EEG signals: SVM+EEG, RBM+SVM+EEG
- Feature-level fusion using SVM
- Decision-level fusion using SVM
- Our method

♦ For incomplete data:

- Discarding data with missing part
- Our method

	Valence								Arousal							
	RBM +SVM EEG	RBM +SVM Peripheral	Our model	SVM EEG	SVM Peripheral	SVM feature-level fusion	SVM decision-level fusion	RBM +SVM EEG	RBM +SVM Peripheral	Our model	SVM EEG	SVM Peripheral	SVM feature-level fusion	SVM decision-level fusion		
Accuracy	59.5%	56.3%	60.7%	58.0%	51.6%	58.9%	58.0%	60.3%	54.9%	64.6%	61.7%	58.1%	62.8%	61.7%		
F1 score	0.535	0.510	0.541	0.522	0.464	0.527	0.522	0.532	0.508	0.512	0.511	0.480	0.521	0.511		
Kappa	0.177	0.114	0.199	0.147	0.024	0.192	0.147	0.216	0.103	0.240	0.196	0.130	0.218	0.196		

Table 1. Emotion recognition results on the DEAP database with complete data

 Table 2. Emotion recognition results on the MAHNOB-HCI database

	Valence								Arousal							
	RBM +SVM	RBM +SVM	Our	SVM	SVM Paripharal	SVM feature-level	SVM decision-level	RBM +SVM	RBM +SVM	Our	SVM	SVM Paripharal	SVM feature-level	SVM decision-level		
	EEG	Peripheral	moder	EEU	renpiierai	fusion	fusion	EEG	Peripheral	moder	EEU	Feripiteral	fusion	fusion		
Accuracy	58.3%	51.8%	59.1%	52.9%	46.5%	57.4%	52.9%	65.3%	58.5%	65.9%	58.9%	56.3%	64.0%	58.9%		
F1 score	0.539	0.505	0.542	0.569	0.504	0.608	0.569	0.646	0.588	0.654	0.588	0.574	0.642	0.588		
Kappa	0.159	0.038	0.173	0.050	0.076	0.142	0.050	0.306	0.171	0.317	0.178	0.125	0.280	0.178		

- Among three fusion methods, our method performs best, demonstrating that the proposed fusion method can successfully capture the dependencies among multiple physiological signals, and result in good performance
- RBM+SVM outperforms SVM, further suggesting good representation of RBM

Experimental Results for Complete data

		Tab	le 1. E	motio	n recogn	ition res	ults on the	e DEAl	P databa	se with	com	olete data	1	
				Val	ence						Are	ousal		
	RBM +SVM EEG	RBM +SVM Peripheral	Our model	SVM EEG	SVM Peripheral	SVM feature-level fusion	SVM decision-level fusion	RBM +SVM EEG	RBM +SVM Peripheral	Our model	SVM EEG	SVM Peripheral	SVM feature-level fusion	SVM decision-level fusion
Accuracy	59.5%	56.3%	60.7%	58.0%	51.6%	58.9%	58.0%	60.3%	54.9%	64.6%	61.7%	58.1%	62.8%	61.7%
F1 score	0.535	0.510	0.541	0.522	0.464	0.527	0.522	0.532	0.508	0.512	0.511	0.480	0.521	0.511
Kappa	0.177	0.114	0.199	0.147	0.024	0.192	0.147	0.216	0.103	0.240	0.196	0.130	0.218	0.196
	1		Table	2. Er	notion re	cognitio	n results (on the I	MAHNO	B-HC	data	base		
	RBM +SVM EEG	RBM +SVM Peripheral	Our model	SVM EEG	SVM Peripheral	SVM feature-level fusion	SVM decision-level fusion	RBM +SVM EEG	RBM +SVM Peripheral	Our model	SVM EEG	SVM Peripheral	SVM feature-level fusion	SVM decision-level fusion
Accuracy	58.3%	51.8%	59.1%	52.9%	46.5%	57.4%	52.9%	65.3%	58.5%	65.9%	58.9%	56.3%	64.0%	58.9%
F1 score	0.539	0.505	0.542	0.569	0.504	0.608	0.569	0.646	0.588	0.654	0.588	0.574	0.642	0.588
Kappa	0.159	0.038	0.173	0.050	0.076	0.142	0.050	0.306	0.171	0.317	0.178	0.125	0.280	0.178

- Among three fusion methods, our method performs best, \diamond demonstrating that the proposed fusion method can successfully capture the dependencies among multiple physiological signals, and result in good performance
- **RBM+SVM outperforms SVM**, further suggesting good \diamond representation of RBM

Experimental Results for Complete data

		Tal	le 1. l	Emotio	n recogr	ition resu	ults on the	DEA	P databa	se with	n comp	plete data	1	
				Vale	ence						Arc	ousal		
	RBM +SVM EEG	RBM +SVM Peripheral	Our model	SVM EEG	SVM Peripheral	SVM feature-level fusion	SVM decision-level fusion	RBM +SVM EEG	RBM +SVM Peripheral	Our model	SVM EEG	SVM Peripheral	SVM feature-level fusion	SVM decision-level fusion
Accuracy	59.5%	56.3%	60.7%	58.0%	51.6%	58.9%	58.0%	60.3%	54.9%	64.6%	61.7%	58.1%	62.8%	61.7%
F1 score	0.535	0.510	0.541	0.522	0.464	0.527	0.522	0.532	0.508	0.512	0.511	0.480	0.521	0.511
Kappa	0.177	0.114	0.199	0.147	0.024	0.192	0.147	0.216	0.103	0.240	0.196	0.130	0.218	0.196
			Tabl	e 2. Er	notion re	cognition	n results of	n the l	MAHNO	B-HC	I data	base		
	RBM	RBM	Tabl	e 2. Er Valo	notion re	cognition	n results o	n the 1		B-HC	I datal	Dase	SVM	SVM
	RBM +SVM EEG	RBM +SVM Peripheral	Tabl Our model	e 2. Er Vak SVM EEG	notion re ence SVM Peripheral	SVM feature-level fusion	n results of SVM decision-level fusion	n the 1 RBM +SVM EEG	RBM +SVM Peripheral	B-HC Our model	I datal	DASE pusal SVM Peripheral	SVM feature-level fusion	SVM decision-level fusion
Accuracy	RBM +SVM EEG 58.3%	RBM +SVM Peripheral 51.8%	Our model 59.1%	e 2. Er Vak SVM EEG 52.9%	notion re ence SVM Peripheral 46.5%	SVM feature-level fusion 57.4%	n results of SVM decision-level fusion 52.9%	n the 1 RBM +SVM EEG 65.3%	RBM +SVM Peripheral 58.5%	B-HC Our model 65.9%	I datal Arc SVM EEG 58.9%	Dase pusal SVM Peripheral 56.3%	SVM feature-level fusion 64.0%	SVM decision-level fusion 58.9%
Accuracy F1 score	RBM +SVM EEG 58.3% 0.539	RBM +SVM Peripheral 51.8% 0.505	Tabl Our model 59.1% 0.542	e 2. Er Vak SVM EEG 52.9% 0.569	notion re svm Peripheral 46.5% 0.504	SVM feature-level fusion 57.4% 0.608	N results O SVM decision-level fusion 52.9% 0.569	n the 1 RBM +SVM EEG 65.3% 0.646	RBM +SVM Peripheral 58.5% 0.588	Our model 65.9% 0.654	I datal Arc SVM EEG 58.9% 0.588	Dase SVM Peripheral 56.3% 0.574	SVM feature-level fusion 64.0% 0.642	SVM decision-level fusion 58.9% 0.588
Accuracy F1 score Kappa	RBM +SVM EEG 58.3% 0.539 0.159	RBM +SVM Peripheral 51.8% 0.505 0.038	Our model 59.1% 0.542 0.173	e 2. EI Vala SVM EEG 52.9% 0.569 0.050	notion re svm Peripheral 46.5% 0.504 0.076	SVM feature-level fusion 57.4% 0.608 0.142	N results O SVM decision-level fusion 52.9% 0.569 0.050	RBM +SVM EEG 65.3% 0.646 0.306	RBM +SVM Peripheral 58.5% 0.588 0.171	Our model 65.9% 0.654 0.317	I datal Arc SVM EEG 58.9% 0.588 0.178	Dase SVM Peripheral 56.3% 0.574 0.125	SVM feature-level fusion 64.0% 0.642 0.280	SVM decision-level fusion 58.9% 0.588 0.178

- Among three fusion methods, our method performs best, demonstrates that the proposed fusion method can successfully capture the dependencies among multiple physiological signals, and result in good performance
- RBM+SVM outperforms SVM, further suggesting good representation of RBM

Fig. 2. Experimental results for incomplete data on the DEAP database

Fig. 3. Experimental results for incomplete data on the MAHNOB-HCI database

♦Our method outperforms the method which discards the whole data with missing part, demonstrating our method successfully exploit all available data for emotion recognition.

 \diamond With the increase of missing rate, emotion recognition performance decrease, since less physiological signals provide less information.

- Introduction
- Method
- Experiments
- Conclusion

- \diamond Propose RBM model capturing relations between EEG and peripheral physiological signals for multimodal emotion recognition.
- \diamond Other than discarding samples with missing part, our model take full advantage of all available data for multimodal emotion recognition.
- \diamond Experimental results on two benchmark databases demonstrate that with complete data, our model can combine EEG and peripheral physiological signals to construct a better feature space for emotion recognition, with incomplete data, our model can exploit all available data to achieve better performance.

Thanks! Any **question?**