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1. The Problem

The separable simplex-structured matrix factorization (sepa-
rable SSMF) problem is defined as follows: Given an input
matrix X ∈ Rm×n and a factorization rank r, find an index
set K of size r and a matrix H ∈ Rm×r such that

X ≈ X(:,K)H where H(:, j) ∈ ∆r for all j,

with
∆r = {h ∈ Rr | h ≥ 0,

∑
j

hj ≤ 1}.

Separable SSMF is a generalization of the separable non-
negative matrix factorization (NMF) problem which requires
X ≥ 0. There are many applications such as hyperspectral
unmixing and document analysis [1].

2. Algorithms

Three classes for separable SSMF algorithms:
1. Greedy algorithms identify sequentially the columns
X(:,K) using a two-step strategy: (1) selection step, and
(2) projection step. They have low computational cost and
memory requirement but are less robust to noise.
Examples: vertex component analysis (VCA) [2], successive
projection algorithm (SPA) [3], AnchorWords [4], successive
nonnegative projection algorithm (SNPA) [6], Preconditioned
SPA (Prec-SPA) [20].
2. Convex relaxations are usually based on the following re-
formulation: Find Y with r non-zero rows such that X ≈ XY .
Promoting row sparsity can be achieved by `1 minimization.
These formulations are significantly more robust than greedy
algorithms but computationally demanding.
Examples: `1,q relaxations [8,9,10], Hottopixx [11], LP-based
relaxations [12,13,14].
3. Combinatorial approaches. Given an index set K,
one can compute the error on fitting X, namely, g(K) =
minH(:,j)∈∆r ∀j ||X − X(:,K)H|| for some norm ||.||. Opti-

mizing g over K is a difficult combinatorial problem with
(
n
r

)
possible solutions.
Examples: N-FINDR [15], ant-colony optimization [16], bee-
colony and genetic algorithms [17], alternating optimiza-
tion [18], approximation algorithms [19].

3. Assumptions

The noiseless separable matrix X ∈ Rm×n is given by

X = X(:,K∗)H = WH,

where (i) |K∗| = r, (ii) H(:, j) ∈ ∆r ∀ 1 ≤ j ≤ n, and (iii) the
matrix W = X(:,K∗) ∈ Rm×r satisfies κ(W ) > 0, where

κ(W ) = min
1≤k≤r

min
h∈∆r−1

||W (:, k)−W (:, [r]\{k})h||2,

with [r] = {1, 2, . . . , r}. Given X, the input noisy matrix X̃ is
given by X̃ = X +N with ||N(:, j)||2 ≤ ε for all j.

4. Provably robust algorithms

Given an algorithm computing the solution K whose goal is to
have X̃(:,K) ≈ X(:,K∗) = W , provide some δ such that

q(K) = max
1≤k≤r

min
j∈K
||W (:, k)− X̃(:, j)||2 ≤ δ,

given that ε is sufficiently small (that is, ε ≤ γ for some γ).

5. Goal of this paper

For greedy algorithms and LP-based relaxations, robustness
results already exist (see Table 1). However, there was a gap
in the literature: no such result exists for combinatorial ap-
proaches. The most natural formulation that tries to recover
W from X̃ is the following:

min
K

f(K), with f(K) = max
1≤j≤n

min
z∈∆
||x̃j − X̃(:,K)z||2. (1)

This formulation tries to find the index set K so that all data
points are well approximated by a linear combinations of the
columns of X̃(:,K). The problem (1) is a difficult combina-
torial problem with

(
n
r

)
possible solutions. However, what

guarantee can we provide on the recovery of W? Is it more
robust than LP-based formulations?

6. Summary of robustness results

Table 1. Comparison of robust algorithms for separable SSMF. We

have cond(W ) =
σmin(W )
σmax(W )

, and β(W ) is another closely related quantity

(taking nonnegativity into account).

6. Conclusion

We provided a tight robustness analysis for a combina-
torial formulation of separable SSMF, showing it is more
robust than greedy and LP-based approaches.

Implication: it is worth investigating combinatorial approaches in
practice. In fact, as shown, e.g., in [18], heuristics for combinatorial
approaches can improve the solutions provided by Greedy and LP-
based algorithms:

Algorithm Urban Terrain

VCA 13.07% → 4.66% 18.61% → 3.29%
SPA 9.58% → 4.57% 5.89% → 3.37%
SNPA 9.63% → 4.91% 5.76% → 3.78%
LP 5.58% → 4.47% 3.34% → 3.01%

Table 2. Improvements in relative error for two hyperspectral images

(Urban and Terrain) when applying a combinatorial local search heuristic

from [18] on the solutions generated by different algorithms.


