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1. THE PROBLEM 4. PROVABLY ROBUST ALGORITHMS

Given an algorithm computing the solution K whose goal is to
have X (:, ) =~ X (:, K*) = W, provide some ¢ such that

a(K) = max min|[W(:, k) — X(:.j)lls < 6.

1<k<r jek o

The separable simplex-structured matrix factorization (sepa-
rable SSMF') problem is defined as follows: Given an input
matrix X € R™*™ and a factorization rank r, find an index
set IC of size r and a matrix H € R™*" such that

given that € is sufficiently small (that is, € <~ for some ~).

5. (GOAL OF THIS PAPER

For greedy algorithms and LP-based relaxations, robustness
results already exist (see Table 1). However, there was a gap
in the literature: no such result exists for combinatorial ap-
proaches. The most natural formulation that tries to recover
W from X is the following:

min f(K), with f(K) = max min||z; — X(:,K)z||2. (1)

X~ X(:;,K)H where H(:,j) € A" for all j,

A" ={heR" |h>0,» h; <1}

J
Separable SSMF is a generalization of the separable non-
negative matrix factorization (NMF') problem which requires

X > 0. There are many applications such as hyperspectral
unmixing and document analysis [1].

)C 1<7<n zeA
This formulation tries to find the index set /C so that all data
points are well approximated by a linear combinations of the
Three classes for separable SSMF algorithms: columns of X(:,KC). The problem (1) is a difficult combina-
1. Greedy algorithms identify sequentially the columns torial problem with (Z) possible solutions. However, what
X(:,K) using a two-step strategy: (1) selection step, and guarantee can we provide on the recovery of W7 Is it more
(2) projection step. They have low computational cost and robust than LP-based formulations?

memory requirement but are less robust to noise.
FExamples: vertex component analysis (VCA) |2], successive 6. S
projection algorithm (SPA) [3], AnchorWords [4], successive . SUMMARY OF ROBUSTNESS RESULTS

nonnegative projection algorithm (SNPA) [6], Preconditioned

noise level v (e < ~) error 0 (¢(K) < 0)
SPA (PI’GC—SPA) [2().] . SPA [3] O (V,;;;;g{?,)g) O (E Cond(l-{f’)z)
2. Convex relaxations are usually based on the following re- o (W) -
. . . AnchorWords [4] O ( Treond (W)E) O (e cond(W))
formulation: Find Y with r non-zero rows such that X ~ XY.

, , , o SNPA [6] O (B(W)4) O (507
Promoting row sparsity can be achieved by ¢; minimization. o P
These formulations are significantly more robust than greedy Prec-SPA 120 O (e cond(W))
algorithms but computationally demanding. LPs 7]

Ezxamples: {; , relaxations [8,9,10|, Hottopixx |[11], LP-based otoprex L 120 71 PT = g 11

relaxations [12,13,14]. —tus paper. model (1

3. Combinatorial approaches. Given an index set K, Table 1. Comparison of robust algorithms for separable SSMF. We
one can compute the error on fitting X, namely, g(K) = have cond(W) = ;min((“%)), and B(W) is another closely related quantity
minH(:,j)EA"“ Vj | X — X(:;,K)H|| for some norm ||.||. Opti- (taking nonnegativity into account).

mizing g over /C is a difficult combinatorial problem with (Z’)
possible solutions.

FExamples: N-FINDR [15], ant-colony optimization [16], bee- 6. CONCLUSION

colony and genetic algorithms [17], alternating optimiza-
tion [18], approximation algorithms [19].

3. ASSUMPTIONS

The noiseless separable matrix X € R™*" is given by

We provided a tight robustness analysis for a combina-
torial formulation of separable SSMF, showing it is more
robust than greedy and LP-based approaches.

Implication: it is worth investigating combinatorial approaches in
practice. In fact, as shown, e.g., in [18], heuristics for combinatorial
approaches can improve the solutions provided by Greedy and LP-
based algorithms:

X =X (39 K*)H = WH, Algorithm Urban Terrain

VCA 13.07% — 4.66% | 18.61% — 3.29%
SPA 9.58% — 4.57% 5.89% — 3.37%
SNPA 9.63% — 4.91% 5.76% — 3.78%

LP 5.58% — 4.47% 3.34% — 3.01%

where (i) |[C*| =r, (ii) H(:,7) € A" V1 < j <n, and (iii) the
matrix W = X (:, *) € R™*" gsatisfies k(W) > 0, where

k(W)= min  min [[W(, k) — WG [F\k}) R,
== RE Table 2. Improvements in relative error for two hyperspectral images

(Urban and Terrain) when applying a combinatorial local search heuristic

with [r] = {1,2,...,r}. Given X, the input noisy matrix X is
given by X = X 4+ N with |[N(:,)||2 < € for all j.

from [18] on the solutions generated by different algorithms.




