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Introduction 
 
What is Sparse Approximation? 
 
Sparse approximation refers to decomposing a target signal 
into a linear combination of very few elements drawn from a 
fixed collection. 
 

Consider the following underdetermined linear system: 
 

                                    
 

where  is the observed vector,  
with  is known coefficient matrix,  
is the unknown signal-of-interest and  is the noise. 
 
The task is to find the sparsest  or the minimum l0-norm 
solution of  such that . 
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Why Sparse Approximation is Important? 
 
In real world, many signals-of-interest have a sparse 
representation in some basis. 
 
As a result, this problem is a core issue in numerous areas 
of science and engineering including statistics, signal 
processing, machine learning, medical imaging and 
computer vision. It is dual to sparse recovery whose aim is 
to retrieve a high-dimensional signal based on a small 
number of linear measurements. 
 
For example, in magnetic resonance imaging, we hope to 
collect as few observations (i.e., ) as possible because 
scan time reduction means benefits for patients and health 
care economics. 
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How to Perform Sparse Approximation? 
 
Finding  with minimum number of nonzero entries or the 
minimum -norm solution of  is in fact NP hard. 
 
In practice, greedy pursuit and convex optimization are two 
standard approaches for obtaining an approximate solution. 
 
Formulating the sparse approximation problem as: 
 

 
 

where  is the target sparsity of , the key idea of 
greedy pursuit is to identify the nonzero components 
sequentially. At each iteration, one column of  that is best 
correlated with the residual from the previous iteration is 
chosen, then its contribution to  is subtracted. 
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Representative greedy pursuit algorithms include matching 
pursuit (MP), orthogonal MP (OMP) and weak MP. 
 
On the other hand, the convex optimization approach aims 
to approximate the -norm by the -norm, and widely-used 
methods include the least absolute shrinkage and selection 
operator (LASSO): 
 

 
 

basis pursuit (BP):  
 

 
 

and l1-regularization: 
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Motivation of lp-Space Sparse Approximation 
 
Derivation of these conventional techniques is based on the 
l2-norm objective function, which implicitly assumes 
Gaussian data. In spite of providing theoretical and 
computational convenience, it is generally understood that 
the validity of the Gaussian distribution is at best 
approximate in reality. 
 
Non-Gaussian impulsive noise arises in many practical 
applications. These standard solvers may fail to work 
properly when the observations contain outliers. 
 
We propose to apply greedy pursuit to solve: 
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lp-Correlation and lp-Orthogonality 
 
At the th step of the iterative procedure of -norm based 
MP, we find a column of  that is most strongly 
correlated with the residual and the column index  is 
determined as: 
 

   
 

Updated approximation and residual are then computed as: 
 

 

and 
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lp-Correlation 
 
To derive the robust MP, we first generalize the inner 
product or correlation, which is based on -norm, to -
space. 
 
The ‐correlation of  and  with

, is defined as: 
 
   

 
where the ‐norm is 
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‐correlation has the following properties: 
 
 The case of  elicits the definition of auto‐ ‐

correlation . 
 
 If  or , then . In other words, any 

vector has zero ‐correlation with a zero vector. 
 
 For any ,  and . 

That is, the ‐correlation is scale‐invariant with respect 
to the first vector  but homogeneous with respect to the 
second vector . 

 
 . In addition,  attains its maximum if 

and only if there exists a scalar  such that , that is, 
 and  are collinear. 
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To make ‐correlation scale‐invariant with respect to both 
vectors, we define normalized ‐correlation coefficient: 
 

   
 

At ,  is reduced to 
 

 
 

That is,  generalizes the conventional correlation 
coefficient. 
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Normalized ‐correlation has the following properties: 
 
 auto‐ ‐correlation coefficient of a nonzero vector  is 

. 
 
 If  or , then . 

 
 The ‐correlation coefficient is scale‐invariant. That is to 

say, for any nonzero scalars  and , we have 
. 

 
 . In addition,  attains its maximum 1 if 

and only if there exists a scalar  such that the nonzero 
vector , that is,  and  are collinear. 
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lp-Orthogonality 
 
Two vectors  and  are ‐orthogonal if . 
 
At , this reduces to orthogonality in inner product space 
as  is equivalent to .  
 
The relationship between ‐orthogonality and the global 
minimizer of the residual function 
 

   
 

 If , then , and  and  are ‐orthogonal for 
any value . 
 
  
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Algorithms for  lp-Correlation Computation 
 
The key step for computing ‐correlation is to solve 
 

 
 

For ,  is twice differentiable and strictly convex for 
any . 
 
The global solution can be easily obtained by Newton’s 
method which has a complexity of  at each iteration. 
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For , the problem is: 
 

   

 

where  is considered as positive weight.  
 
Defining a new sequence 
 

   
 

The optimal  is the weighted median of the sequence 
 with weights : 
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Algorithm for computing weighted median  
 
Input: Weighting coefficients  and data sequence 

. 
 
1. Determine the threshold . 
2. Sort the data sequence  in ascending order with 

the corresponding concomitant weights . 
3. Sum the concomitant weights, beginning with  and 

increasing the order. 
4. The weighted median  is  whose weight leads to the 

inequality  hold first. 
 
Output: The weighted median . 
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For , the problem is reformulated as: 
 

 

 

Assume that  has been sorted in ascending order. 
 
The function  is piecewise with breakpoints at , 
that is, the domain of  can be divided into  
intervals: , , , and . 
 
In each interval, the sign of  is known and the 
absolute operator  can be removed. Noting that  
or  is a concave function due to ,  is 
concave because the non‐negative combination preserves 
concavity.  
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As a concave function attains its minimum at the boundary 
points, the minimizer of  belongs to  since 

: 
 

 

 

The algorithm complexity is . 
 
Take an example: ,  
and . To find the global 
minimum of , we compute the objective function value 
at the sorted  where  
attains its minimum at .  
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 vs  at  
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Robust Greedy Pursuit Algorithms 
 
lp-MP 
 
It is the outlier-resistant version of MP.  
 
Let ,  and  be the solution, residual, and index set of 
the nonzero elements of  at the th iteration.  
 
Algorithm for ‐MP 
 
Input: , , error tolerance , and target sparsity  
 
Initialization: Initialize , and set the initial solution 

, residual , and initial index set .  
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Repeat 
 

  
 

 Select the index  via 
 

  
 

 Augment the index set . 
 

 Update the solution  and  with  
 

 
 

 Update the residual 
 

  
  

until  or  
 

Output:  
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Theorem 1 
 
The ‐norm of the residual of the ‐MP algorithm decays 
exponentially with a rate proportional to : 
 

   
 

where 
 

 
 

with 
 

 
 

being the ‐decay‐factor of  and , which is the maximal 
normalized ‐correlation of  and the columns of . 
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Weak lp-MP 
 
It is the outlier-resistant version of weak MP.  
 
It does not attempt to find the index associated with the 
maximal possible ‐correlation  but chooses the 

index  that satisfies 
 

   
 

Algorithm for Weak ‐MP 
 
Input: , , error tolerance , and target sparsity  
 
Initialization: Initialize , and set the initial solution 

, residual , and initial index set .  
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Repeat 
 

  
 

 

 Set  as first index that satisfies . If 
there is no such an index, set 

 

  
 

 Augment the index set . 
 

 Update the solution  and  with  
 

 
 

 Update the residual 
 

   
until  or  
 

Output:  
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Theorem 2 
 

The ‐norm of the residual of the weak ‐MP algorithm 
decays exponentially with a rate proportional to 

: 
 

   
 
lp-OMP 
 

It is the outlier-resistant version of OMP.  
 

Algorithm for ‐OMP 
 
Input: , , error tolerance , and target sparsity  
 
Initialization: Initialize , and set the initial solution 

, residual , initial index set  and . 
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Repeat 
 

  
 

 Select the index  via 
  
 

 Augment the index set and the matrix of chosen atoms 
as  and . 
 

 Solve the ‐norm minimization problem: 
 

 
 

to obtain the nonzero coefficients. 
 

 Update the residual 
   

 

until  or  
 

Output: Index set  and the corresponding coefficients  
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Algorithm Complexity 
MP/OMP  

‐MP/ ‐OMP ( )  
‐MP/ ‐OMP ( )  
‐MP/ ‐OMP ( )  

Complexity of Index Selection 
 
 

Algorithm Complexity 
OMP  

‐OMP ( )  
‐OMP ( )  (local minimum) 

Complexity of Orthogonalization 
 

 is number of iterations used in iteratively reweighted 
least squares in solving ‐norm minimization problem 
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Numerical Examples 
 
Sparse Recovery 
 
Unknown  with  nonzero entries whose 
magnitudes are uniformly drawn in . 
 
Known  contains random entries. 
 
Noise  contains Gaussian mixture model (GMM) or 
salt-and-pepper variables. 
 

‐MP and ‐OMP with  or  are compared with MP 
and OMP. 
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 vs Iteration Number in Noiseless and GMM cases 
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Sparse Recovery in Noiseless case 
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Sparse Recovery in GMM noise 
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Sparse Recovery in Salt-and-Pepper noise 
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MSE for  versus SNR in GMM noise 
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Harmonic Retrieval 
 
The observation vector  is now: 
 

   

 

The frequency matrix  is: 
 

  

 

 contains unknowns associated with  bins: 
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Probability of Resolution vs Generalized SNR in S S noise  
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MSE vs Generalized SNR in S S noise 
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Summary 
 
 Novel concepts of ‐correlation and ‐orthogonality are 

devised and they generalize the standard correlation and 
orthogonality definitions in the inner product space. 
 

 ‐correlation provides similarity measure of two vectors 
in ‐space where , and its computational efficient 
realizations are developed. 

 
 ‐space versions of MP, OMP and weak MP are derived 

and they outperform the ‐norm based counterparts in 
the presence of impulsive noise or outliers. 
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