

MULTI-RESOLUTION SUPER-PIXELS AND THEIR APPLICATIONS ON FLUORESCENT MESENCHYMAL STEM CELLS IMAGES USING 1-D SIFT BASED MERGING

Introduction

•The difficulty of visually scanning very large high resolution fluorescent microscopic images requires automated processing. •It is necessary to implement a reliable algorithm that can follow the changes of each cell individually.

•A new super-pixel based algorithm is proposed to segment fluorescent microscopy images with varying super-pixel sizes. •The goal is to represent a cell or a stem cell using a couple of superpixels. 1-D SIFT concept is introduced to merge superpixels.

Literature & Our Model

•Super-pixel algorithms start by dividing the image into uniform segments.

•Iterative algorithms are used to modify the uniform segments into regions that try to cover similar pixels.

•Simple Linear Iterative Clustering [1] method is used as the underlying super-pixel method.

•Initial seed position are uniformly placed throughout the image. •As a result initial super-pixel regions have honeycomb shapes.

•Let $x [n_1, n_2]$ be a 2-D microscopic image. It is processed by a wavelet high-pass filter both vertically and horizontally. h[l] is a half-band wavelet high-pass filter with length L.

$$y_h[n_1, n_2] = \sum_{l=0}^{L-1} x[l - n_1, n_2] \cdot h[l] \quad (1)$$

$$y_{\nu}[n_1, n_2] = \sum_{l=0}^{L-1} x[n_1, l - n_2] \cdot h[l] \quad (2)$$

where $h[l] = [-0.25 \ 0.5 \ -0.25].$

•An image y_e representing the edge information of the original image x is obtained by:

$$y_e = |y_{h,r}| + |y_{h,g}| + |y_{h,b}| + |y_{v,r}| + |y_{v,g}| + |y_{v,b}|$$

-This project is funded by TÜBİTAK with the grant number 113E069.

Middle East Technical University, Graduate School of Informatics²

Seed Placement

• $t = \frac{1}{4} (\max(y_e[n_1, n_2]) + \min(y_e[n_1, n_2])) + \frac{1}{2N} (\sum_{n_1 n_2} (y_e[n_1, n_2]))$ (4)

• As in SLIC algorithm two distance measures are defined as d_c and d_l .

$$d_l = \sqrt{(p_x - m_x)^2 + (p_y - m_y)^2} \quad (5) \qquad d_c = \sqrt{(p_1 - m_1)^2 + (p_2 - m_2)^2 + (p_3 - m_3)^2} \quad (6)$$

• A weighted sum of d_c and d_l are used as a distance.

Multiresolution vs SLIC

1-D SIFT Algorithm

• SIFT is a well known algorithm used in many computer vision applications. In 1-D SIFT histograms are filtered with 1-D DoG filters and local extrema locations are determined. DoG Signals

• A point on DoG scale is an extrema if it is greater than the surrounding 8 points.

• Two super-pixels are considered to be similar as long as indices of DoG extrema points are similar to each other.

(3)

Onur Yorulmaz¹,Oğuzhan Oğuz¹,Ece Akhan¹,Dönüş Tuncel¹,Rengül Ç. Atalay², A.Enis Çetin ¹ Bilkent University ¹

• If a region between the two connected seeds on that pattern has high wavelet energy values, place an additional seed between them.

• A threshold is applied to $y_e[n_1, n_2]$ components to decide whether to place a new seed in the midpoint of two connected seeds.

• After this new seeding process, initial superpixel groups are created by assigning pixels to the nearest cluster centers.

$$=\sqrt{d_c^2 + k d_l^2 c}$$
 (7) $c = \frac{1}{Area}$ (8)

1990 9000 Next Octave ∧ <u>1999900</u> DoG Signals 1 1999909 ΪΫΫΫΫΫϘϘϘϘ

E		
\mathcal{O}		*
Result		
<u>nesui</u>	13	
	Multi-resolution SP	SLIC
MCC. I	Detection rate $(\%)/$	Detection rate $(\%)/$
MSCs Image Image 1	False Alarm rate (%) 90.51/2.06	False Alarm rate (%) 93.23 / 3.01
Image 1 Image 2	90.31 / 2.00	83.90 / 3.60
Image 3	81.39 / 1.30	81.16/3.00
Image 4	87.89/7.42	87.84 / 5.78
Image 5	83.84 / 10.01 85.90 / 8.89	82.46 / 13.73
Image 6 Image 7	85.58 / 0.11	79.46 / 10.40 87.34 / 4.89
Image 8	84.32 / 8.99	92.30/21.88
Image 9	82.53 / 0.38	63.06 / 6.23
Image 10	86.72/0.96	72.58 / 19.92
Image 11 Image 12	92.66 / 6.50 80.64 / 8.26	74.60 / 8.08 78.99 / 26.84
Image 12	93.58 / 15.45	66.69 / 18.26
Average	80.33 / 6.05	80.20/11.20
	urison of cell detection in pixels and SLIC.	n MSCs images using
	Multi-resolution SP	SLIC
	Detection rate (%)/	Detection rate (%)/
MSCs Image	False Alarm rate (%)	False Alarm rate (%)
Image 1 Image 2	91.10/1.23 81.63/0.32	51.29 / 0.81 91.15 / 1.97
Image 2 Image 3	92.10/1.75	28.26/0.96
Image 4	95.30/1.13	80.30/3.71
Image 5	62.84 / 0.27	68.24 / 43.67
Image 6 Image 7	69.56 / 16.02 77.75 / 1.43	59.65 / 16.89 83.23 / 8.76
Image 8	88.12/11.28	90.71/19.84
Image 9	61.21 / 3.83	46.31 / 6.73
Image 10	64.06 / 0.01	61.06 / 19.08
Image 11 Image 12	90.05 / 7.52 79.23 / 20.99	72.51/7.54 81.55/51.61
Image 12 Image 13	89.90/23.57	62.72/26.33
Average	80.21 / 6.87	67.46/15.99
	us region detection accu ed to the SLIC method.	racy of the proposed
	a to the SLIC method.	
Concl	<u>usion</u>	
•A multi-resolution super-pixel method for M		
•Initial seed locations are determined according		
•A threshold-free superpixel similarity method		
algorithm.		
References		
[1] Radhakrishna Achanta, Appu Shaji, Kevin Smith, A		
Susstrunk, "Slic superpixels compared to state-of-the-		
and Machine Intelligence, IEEE Transactions on, vol. 3- [2] David G Lowe, "Distinctive image features from sca		
LEJ Daviu G LO		ge ieatures ituiti SCa

• Two superpixels are considered to be similar as long as indices of DoG extrema points are similar to each other.

• Detection and false alarm - rates for each cell nucleus and cytoplasm are calculated by comparing the results of the proposed algorithm and SLIC in [1] with manually marked regions of MSCs images as ground-truth.

•Super-pixels are classified as cell-type or background-type depending on the region they cover in the ground-truth image.

•The cell region detection accuracy of the proposed method is compared to the SLIC method [1] in Table 1.

ISCs images is proposed. ling to local wavelet energy. od becomes possible with 1-D SIFT

Aurelien Lucchi, Pascal Fua, and Sabine e-art superpixel methods,"Pattern Analysis 34, no. 11, pp. 2274–2282, 2012. [2] David G Lowe, "Distinctive image features from scaleinvariant keypoints," International journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.