Deviation Detection with Continuous Observations

Pengfei Yang and Biao Chen

Syracuse University

pyang04{bichen}@syr.edu

December 11, 2015

1 Deviation Detection Problem Formulation

2 Why Use d_L Rather Than d_{KL} .

Asymptotic Deviation Detection
 An Asymptotically δ–Optimal Detector.

1 Deviation Detection Problem Formulation

2) Why Use d_L Rather Than d_{KL} .

Asymptotic Deviation Detection
 An Asymptotically δ–Optimal Detector.

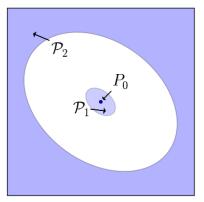


Fig. 1: the probability space \mathcal{P} .

 P_0 : the nominal distribution. \mathcal{P} : the probability space.

$$\begin{aligned} \mathcal{P}_1 &:= \{ P \in \mathcal{P} : d(P, P_0) \leq \lambda_1 \}, \\ \mathcal{P}_2 &:= \{ P \in \mathcal{P} : d(P, P_0) \geq \lambda_2 \}. \end{aligned}$$

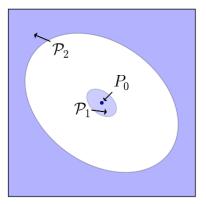


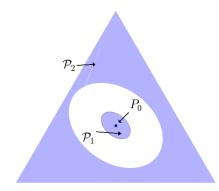
Fig. 1: the probability space \mathcal{P} .

 P_0 : the nominal distribution. \mathcal{P} : the probability space.

$$\begin{aligned} \mathcal{P}_1 &:= \{ P \in \mathcal{P} : d(P, P_0) \leq \lambda_1 \}, \\ \mathcal{P}_2 &:= \{ P \in \mathcal{P} : d(P, P_0) \geq \lambda_2 \}. \end{aligned}$$

 $\mathcal{H}_1: P \in \mathcal{P}_1,$ $\mathcal{H}_2: P \in \mathcal{P}_2.$

Under Neyman-Pearson (N-P) criterion, which *d* is appropriate?



 P_0 : a discrete distribution.

$$\begin{aligned} \mathcal{P}_1 &:= \{ P \in \mathcal{P} : d(P, P_0) \leq \lambda_1 \}, \\ \mathcal{P}_2 &:= \{ P \in \mathcal{P} : d(P, P_0) \geq \lambda_2 \}. \end{aligned}$$

Fig. 2: the probability simplex \mathcal{P} .

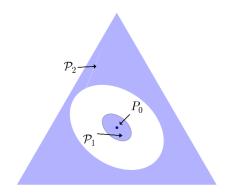


Fig. 2: the probability simplex \mathcal{P} .

- P_0 : a discrete distribution.
- $\begin{aligned} \mathcal{P}_1 &:= \{ P \in \mathcal{P} : d(P, P_0) \leq \lambda_1 \}, \\ \mathcal{P}_2 &:= \{ P \in \mathcal{P} : d(P, P_0) \geq \lambda_2 \}. \end{aligned}$

Many choices for *d*, e.g., the total variation, KL divergence ...

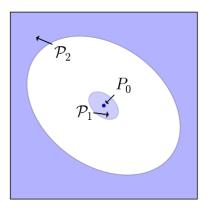


Fig. 3: the probability space \mathcal{P} .

 P_0 : the nominal distribution. \mathcal{P} : the probability space.

$$\begin{aligned} \mathcal{P}_1 &:= \{ P \in \mathcal{P} : d(P, P_0) \leq \lambda_1 \}, \\ \mathcal{P}_2 &:= \{ P \in \mathcal{P} : d(P, P_0) \geq \lambda_2 \}. \end{aligned}$$

 $\mathcal{H}_1: P \in \mathcal{P}_1,$ $\mathcal{H}_2: P \in \mathcal{P}_2.$

Unlike the discrete case, not every d can describe such a problem.

$$\min_{\phi^n} \sup_{P_2 \in \mathcal{P}_2} P_2^n(\phi^n = 1) \quad \text{s.t.} \quad \sup_{P_1 \in \mathcal{P}_1} P_1^n(\phi^n = 2) \leq \alpha,$$

where $\phi^n = \phi^n(X^n)$ is the output of the detector.

$$\min_{\phi^n} \sup_{P_2 \in \mathcal{P}_2} P_2^n(\phi^n = 1) \quad \text{s.t.} \quad \sup_{P_1 \in \mathcal{P}_1} P_1^n(\phi^n = 2) \leq \alpha,$$

where $\phi^n = \phi^n(X^n)$ is the output of the detector.

Natrually, we need $\mathcal{P}_1 \cap \mathcal{P}_2 = \emptyset$.

$$\min_{\phi^n} \sup_{P_2 \in \mathcal{P}_2} P_2^n(\phi^n = 1) \quad \text{s.t.} \quad \sup_{P_1 \in \mathcal{P}_1} P_1^n(\phi^n = 2) \leq \alpha,$$

where $\phi^n = \phi^n(X^n)$ is the output of the detector.

Natrually, we need $\mathcal{P}_1 \cap \mathcal{P}_2 = \emptyset$.

Actually, we need $c | \mathcal{P}_1 \cap c | \mathcal{P}_2 = \emptyset$, where *cl* is with respect to (\mathcal{P}, d_L) .

$$\min_{\phi^n} \sup_{P_2 \in \mathcal{P}_2} P_2^n(\phi^n = 1) \quad \text{s.t.} \quad \sup_{P_1 \in \mathcal{P}_1} P_1^n(\phi^n = 2) \leq \alpha,$$

where $\phi^n = \phi^n(X^n)$ is the output of the detector.

Natrually, we need $\mathcal{P}_1 \cap \mathcal{P}_2 = \emptyset$.

Actually, we need $c | \mathcal{P}_1 \cap c | \mathcal{P}_2 = \emptyset$, where c | is with respect to (\mathcal{P}, d_L) .

$$d_L(F,G) := \inf\{\epsilon : F(x-\epsilon) - \epsilon \leq G(x) \leq F(x+\epsilon) + \epsilon, \forall x\}.$$

Deviation Detection Problem Formulation

Asymptotic Deviation Detection
 An Asymptotically δ–Optimal Detector.

Proposition 1.

Let P_0 be the normal distribution. For any given $\lambda > 0$, let

$$\mathcal{P}_{\lambda} := \{ P \in \mathcal{P} : d_{\mathsf{KL}}(P, P_0) = \lambda \},\$$

then

$$cl\mathcal{P}_{\lambda} = \{P \in \mathcal{P} : d_{KL}(P, P_0) \leq \lambda\}.$$

Proposition 1.

Let P_0 be the normal distribution. For any given $\lambda > 0$, let

$$\mathcal{P}_{\lambda} := \{ P \in \mathcal{P} : d_{\mathsf{KL}}(P, P_0) = \lambda \},\$$

then

$$cl\mathcal{P}_{\lambda} = \{P \in \mathcal{P} : d_{KL}(P, P_0) \leq \lambda\}.$$

If d_{KL} is used in defining \mathcal{P}_1 and \mathcal{P}_2 , then,

Proposition 1.

Let P_0 be the normal distribution. For any given $\lambda > 0$, let

$$\mathcal{P}_{\lambda} := \{ P \in \mathcal{P} : d_{\mathsf{KL}}(P, P_0) = \lambda \},\$$

then

$$cl\mathcal{P}_{\lambda} = \{P \in \mathcal{P} : d_{KL}(P, P_0) \leq \lambda\}.$$

If d_{KL} is used in defining \mathcal{P}_1 and \mathcal{P}_2 , then,

• $cl\mathcal{P}_1 \cap cl\mathcal{P}_2 \neq \emptyset$.

 d_{KL} is not appropriate in defining the deviation detection problem.

By defining \mathcal{P}_1 and \mathcal{P}_2 using d_L ,

By defining \mathcal{P}_1 and \mathcal{P}_2 using d_L ,

- $cl\mathcal{P}_1 \cap cl\mathcal{P}_2 = \emptyset$,
- The proximity set \mathcal{P}_1 inlcudes all distributions which are close enough to P_0 in other measures, for example d_{KL} .

By defining \mathcal{P}_1 and \mathcal{P}_2 using d_L ,

- $cl\mathcal{P}_1 \cap cl\mathcal{P}_2 = \emptyset$,
- The proximity set \mathcal{P}_1 inludes all distributions which are close enough to P_0 in other measures, for example d_{KL} .
 - For any $\lambda'_1 > 0$, there exists a $\lambda_1 > 0$ s.t.

 $B_{KL}(P_0, \lambda_1) \subseteq B_L(P_0, \lambda_1'),$

• however, the reverse statement is not true, i.e., for any λ_1, λ_1' ,

 $B_L(P_0, \lambda'_1) \nsubseteq B_{KL}(P_0, \lambda_1).$

Deviation Detection Problem Formulation

2) Why Use d_L Rather Than d_{KL} .

Asymptotic Deviation Detection
 An Asymptotically δ–Optimal Detector.

For the fixed sample size deviation detection, some widely used methods fail, e.g.,

- generalized likelihood ratio test (GLRT),
- least favorable distributions (LFDs).

For the fixed sample size deviation detection, some widely used methods fail, e.g.,

- generalized likelihood ratio test (GLRT),
- least favorable distributions (LFDs).

But we can still find an asymptotically δ -optimal detector.

Asymptotic deviation detection

 $\hat{\mu}_n \sim$ the empirical distribution.

The minimax asymptotic N-P criterion. [Zeitouni et al., 1991]

$$\sup_{\Omega} \inf_{P_2 \in \mathcal{P}_2} I^{P_2}(\Omega) \quad \text{s.t.} \quad \inf_{P_1 \in \mathcal{P}_1} J^{P_1}(\Omega) \geq \eta,$$

where

$$I^{P_2}(\Omega) = \lim_{n \to \infty} -\frac{1}{n} \log P_2^n(\hat{\mu}_n \in \Omega_1(n)),$$

 $J^{P_1}(\Omega) = \lim_{n \to \infty} -\frac{1}{n} \log P_1^n(\hat{\mu}_n \in \Omega_2(n)).$

 $\Omega = \{(\Omega_1(n), \Omega_2(n)), n \ge 1\}$ in which $\Omega_1(n)$ and $\Omega_2(n)$ are partitions of all *n*-sample empirical distributions.

Asymptotic deviation detection

- When \mathcal{P}_1 and \mathcal{P}_2 each contains only single continuous distribution, [Zeitouni et al., IEEE Trans IT 1991] provides an δ -optimal detector.
- In our problem,

 $\mathcal{P}_1 := \{ P \in \mathcal{P} : d_L(P, P_0) \leq \lambda_1 \}, \mathcal{P}_2 := \{ P \in \mathcal{P} : d_L(P, P_0) \geq \lambda_2 \}.$

Asymptotic deviation detection

- When \mathcal{P}_1 and \mathcal{P}_2 each contains only single continuous distribution, [Zeitouni et al., IEEE Trans IT 1991] provides an δ -optimal detector.
- **②** When \mathcal{P}_1 represents moment restrictions, [Kitamura, 2001] demonstrated that δ -optimality holds for the empirical likelihood ratio test.
- In our problem,

 $\mathcal{P}_1 := \{ P \in \mathcal{P} : d_L(P, P_0) \leq \lambda_1 \}, \mathcal{P}_2 := \{ P \in \mathcal{P} : d_L(P, P_0) \geq \lambda_2 \}.$

Some definitions:

1 For any set $\Gamma \subset \mathcal{P}$, its δ -smooth set is,

$$\Gamma^{\delta} := \cup_{\mu \in \Gamma} B(\mu, \delta).$$

2 For sets $\Gamma_1, \Gamma_2 \subseteq \mathcal{P}$, we will write

$$\inf_{\gamma_1\in\Gamma_1,\gamma_2\in\Gamma_2}d_{KL}(\gamma_1,\gamma_2)=d_{KL}(\Gamma_1,\Gamma_2)$$

For any given $\delta > 0$, detector

$$\Lambda_2(n) = \Lambda_2 := \{\mu : d_{KL}(\bar{B}(\mu, 2\delta), \mathcal{P}_1) \geq \eta\}^{\delta}, \Lambda_1 := \mathcal{P}/\Lambda_2$$

is δ -optimal for the deviation detection problem, i.e.,

For any given $\delta > 0$, detector

$$\Lambda_2(n) = \Lambda_2 := \{\mu : d_{KL}(\bar{B}(\mu, 2\delta), \mathcal{P}_1) \geq \eta\}^{\delta}, \Lambda_1 := \mathcal{P}/\Lambda_2$$

is $\delta-{\rm optimal}$ for the deviation detection problem, i.e.,

 $Inf_{P_1 \in \mathcal{P}_1} J^{P_1}(\Lambda) \geq \eta.$

For any given $\delta > 0$, detector

$$\Lambda_2(n) = \Lambda_2 := \{\mu : d_{KL}(\bar{B}(\mu, 2\delta), \mathcal{P}_1) \geq \eta\}^{\delta}, \Lambda_1 := \mathcal{P}/\Lambda_2$$

is $\delta-{\rm optimal}$ for the deviation detection problem, i.e.,

•
$$\inf_{P_1 \in \mathcal{P}_1} J^{P_1}(\Lambda) \ge \eta.$$

• $\inf_{P_2 \in \mathcal{P}_2} I^{P_2}(\Lambda) \ge d_{KL}(\Lambda_1, \mathcal{P}_2) := e(\eta, \delta).$

For any given $\delta > 0$, detector

$$\Lambda_2(n) = \Lambda_2 := \{\mu : d_{\mathcal{KL}}(\bar{B}(\mu, 2\delta), \mathcal{P}_1) \geq \eta\}^{\delta}, \Lambda_1 := \mathcal{P}/\Lambda_2$$

is $\delta-{\rm optimal}$ for the deviation detection problem, i.e.,

$$\inf_{P_1\in\mathcal{P}_1}J^{P_1}(\Omega^{6\delta})\geq\eta,$$

then,

$$\inf_{P_2\in\mathcal{P}_2}I^{P_2}(\Omega^{\delta})\leq e(\eta,\delta).$$

Simplify the optimal detector to be a generalized empirical likelihood ratio test ($\delta = 0$ in Theorem 1.):

$$\Lambda_2(n) = \Lambda_2 := \{ \mu : d_{\mathcal{K}L}(\mu, \mathcal{P}_1) \ge \eta \}, \qquad \Lambda_1 := \mathcal{P}/\Lambda_2.$$

Thanks