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0 Deviation Detection Problem Formulation



General Model

Py : the nominal distribution.
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Fig. 1: the probability space P.
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Fig. 1: the probability space P. which d is appropriate?



Py : a discrete distribution.

Py :={PeP:d(P,Py) < \},
Pr:={PeP:d(P,Py) > \2}.
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Fig. 2: the probability simplex P.



Py : a discrete distribution.

Py :={PeP:d(P,Py) < \},

&y / Py :={PeP:d(P,Py) > A}
B Many choices for d, e.g.,
L 'X\ the total variation,
P KL divergence ...

Fig. 2: the probability simplex P.



Fig. 3: the probability space P.

Continuous Case

Py : the nominal distribution.
P : the probability space.

731 = {P epP: d(P, Po) < )\1},
P = {P eP: d(P, Po) > )\2}.

H1:P6P1,
Ho: P e Ps.

Unlike the discrete case,
not every d can describe
such a problem.



Composite Hypothesis Testing

The minimax N-P criterion [Huber, 1965]

min sup PF(¢" =1) st. sup P{(¢" =2)<aq,
" PyeP, P1ePy

where ¢" = ¢"(X") is the output of the detector.
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Composite Hypothesis Testing

The minimax N-P criterion [Huber, 1965]

min sup PF(¢" =1) st. sup P{(¢" =2)<aq,
" PyeP, P1ePy

where ¢" = ¢"(X") is the output of the detector.

Natrually, we need P; NP, = ().
Actually, we need c/Py N c/P2 = (), where cl is with respect to (P, d|).

di(F,G) :=inf{le: F(x —€) —e < G(x) < F(x +€) + ¢, Vx}.
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9 Why Use d; Rather Than dk;.
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Closure of The KL Surface

Let Py be the normal distribution. For any given A > 0, let

Py = {P ep: dKL(P, Po) = )\},
then

clPy = {P eP: dKL(P, PO) < /\}.
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Closure of The KL Surface

Proposition 1.

Let Py be the normal distribution. For any given A > 0, let
Py = {P eP: dKL(P, Po) = )\},
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clPy = {P eP: dKL(P, PO) < )\}.

If dki is used in defining P; and P», then,
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Closure of The KL Surface

Proposition 1.
Let Py be the normal distribution. For any given A > 0, let

’P)\ = {P eP: dKL(P, Po) = )\},

then

clPy = {P eP: dKL(P, PO) < )\}.

If dki is used in defining P; and P», then,
@ cIPyNclPy # 0.

dky is not appropriate in defining the deviation detection problem.
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The Legitimacy of Choosing d;

By defining P; and P> using d;,
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The Legitimacy of Choosing d;

By defining P; and P» using d,
e cIPiNclPy=0,

@ The proximity set P; inlcudes all distributions which are close enough
to Py in other measures, for example dg; .
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The Legitimacy of Choosing d;

By defining P; and P» using d,
e cIPiNclPy=0,

@ The proximity set P; inlcudes all distributions which are close enough
to Py in other measures, for example dg; .

o For any \| > 0, there exists a A\; > 0 s.t.
Bki(Po, A1) € Bi(Po, AY),
o however, the reverse statement is not true, i.e., for any Ay, A},

Bi(Po, A1) € Bki(Po, A1)
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© Asymptotic Deviation Detection
@ An Asymptotically §—Optimal Detector.
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Asymptotic deviation detection

For the fixed sample size deviation detection, some widely used methods
fail, e.g.,

o generalized likelihood ratio test (GLRT),

@ least favorable distributions (LFDs).
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Asymptotic deviation detection

For the fixed sample size deviation detection, some widely used methods
fail, e.g.,

o generalized likelihood ratio test (GLRT),

@ least favorable distributions (LFDs).

But we can still find an asymptotically d—optimal detector.
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Asymptotic deviation detection

fin ~ the empirical distribution.

The minimax asymptotic N-P criterion. [Zeitouni et al., 1991]

inf 1P2(Q) st inf JP(Q) >0,
I It (€) st in (@) =n
where

IP2(@) = tim — log PJ(jin € (),

n—oo

1
JP(@) = lim = log P (jin € Da(n)).

n—oo

Q = {(Q1(n), Q22(n)), n > 1} in which Q;(n) and Q2(n) are partitions of
all n-sample empirical distributions.
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Asymptotic deviation detection

@ When P; and P, each contains only single continuous distribution,
[Zeitouni et al., IEEE Trans IT 1991] provides an d—optimal detector.
@ When P; represents moment restrictions, [Kitamura, 2001]

demonstrated that J—optimality holds for the empirical likelihood
ratio test.

© In our problem,
P1:={PeP:d(P,Py) < \},Pa:={P€P:d(P,Py) > \2}.
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Asymptotic deviation detection

@ When P; and P, each contains only single continuous distribution,
[Zeitouni et al., IEEE Trans IT 1991] provides an d—optimal detector.
@ When P; represents moment restrictions, [Kitamura, 2001]

demonstrated that J—optimality holds for the empirical likelihood
ratio test.

© In our problem,
P = {P epP: dL(P, Po) < )\1},732 = {P epP: dL(P, Po) > )\2}.
Some definitions:

© For any set [ C P, its —smooth set is,
= UuerB(u, 6).
@ Forsets ', C P, we will write

inf _d ) =dk (M1, T
™ e, kL (71,72) = dki (M1, T2)
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For any given § > 0, detector
No(n) = Ao == {p : die(B(p, 26), P1) > 1}, Ay == P/

is 0—optimal for the deviation detection problem, i.e.,

26 /31



For any given § > 0, detector
No(n) = Ao == {p : die(B(p, 26), P1) > 1}, Ay == P/

is 0—optimal for the deviation detection problem, i.e.,
(1] ian1€'Pl JPI(A) > n.

27/31



For any given § > 0, detector
No(n) = Ao == {p : die(B(p, 26), P1) > 1}, Ay == P/

is 0—optimal for the deviation detection problem, i.e.,
(1] ian1€'Pl JPI(A) > n.
@ infp,ep, IP2(A) > dii (A1, P2) := e(n, 6).
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For any given § > 0, detector
No(n) = Ao == {p : die(B(p, 26), P1) > 1}, Ay == P/
is 0—optimal for the deviation detection problem, i.e.,
() infplgpl JPI(/\) > n.

@ infp,cp, I72(A) > dii (M1, P2) == e(n, 6).
© Ais d-optimal, i.e., if Q is a test s.t.

inf JP1(Q%) >
P1Ig731 ( ) =

then,

inf 172(Q%) < 5).
Anf (Q%) < e(n,9)
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Simplify the optimal detector to be a generalized empirical likelihood ratio
test (0 = 0 in Theorem 1.):

/\2([7) = /\2 = {/J, : dK[_(,U,,Pl) > ’l]}, /\1 = P/A2
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