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General Model

Fig. 1: the probability space P.

P0 : the nominal distribution.
P : the probability space.

P1 := {P ∈ P : d(P,P0) ≤ λ1},
P2 := {P ∈ P : d(P,P0) ≥ λ2}.

H1 : P ∈ P1,

H2 : P ∈ P2.

Under Neyman-Pearson
(N-P) criterion,
which d is appropriate?

4 / 31



General Model

Fig. 1: the probability space P.

P0 : the nominal distribution.
P : the probability space.

P1 := {P ∈ P : d(P,P0) ≤ λ1},
P2 := {P ∈ P : d(P,P0) ≥ λ2}.

H1 : P ∈ P1,

H2 : P ∈ P2.

Under Neyman-Pearson
(N-P) criterion,
which d is appropriate?

5 / 31



Discrete Case

Fig. 2: the probability simplex P.

P0 : a discrete distribution.

P1 := {P ∈ P : d(P,P0) ≤ λ1},
P2 := {P ∈ P : d(P,P0) ≥ λ2}.

Many choices for d , e.g.,
the total variation,
KL divergence ...
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Continuous Case

Fig. 3: the probability space P.

P0 : the nominal distribution.
P : the probability space.

P1 := {P ∈ P : d(P,P0) ≤ λ1},
P2 := {P ∈ P : d(P,P0) ≥ λ2}.

H1 : P ∈ P1,

H2 : P ∈ P2.

Unlike the discrete case,
not every d can describe
such a problem.
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Composite Hypothesis Testing

The minimax N-P criterion [Huber, 1965]

min
φn

sup
P2∈P2

Pn
2 (φn = 1) s.t. sup

P1∈P1

Pn
1 (φn = 2) ≤ α,

where φn = φn(X n) is the output of the detector.

Natrually, we need P1 ∩ P2 = ∅.

Actually, we need clP1 ∩ clP2 = ∅, where cl is with respect to (P, dL).

dL(F ,G ) := inf{ε : F (x − ε)− ε ≤ G (x) ≤ F (x + ε) + ε,∀x}.
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Closure of The KL Surface

Proposition 1.

Let P0 be the normal distribution. For any given λ > 0, let

Pλ := {P ∈ P : dKL(P,P0) = λ},

then

clPλ = {P ∈ P : dKL(P,P0) ≤ λ}.

If dKL is used in defining P1 and P2, then,

clP1 ∩ clP2 6= ∅.
dKL is not appropriate in defining the deviation detection problem.
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The Legitimacy of Choosing dL

By defining P1 and P2 using dL,

clP1 ∩ clP2 = ∅,
The proximity set P1 inlcudes all distributions which are close enough
to P0 in other measures, for example dKL.

For any λ′1 > 0, there exists a λ1 > 0 s.t.

BKL(P0, λ1) ⊆ BL(P0, λ
′
1),

however, the reverse statement is not true, i.e., for any λ1, λ
′
1,

BL(P0, λ
′
1) * BKL(P0, λ1).
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Asymptotic deviation detection

For the fixed sample size deviation detection, some widely used methods
fail, e.g.,

generalized likelihood ratio test (GLRT),

least favorable distributions (LFDs).

But we can still find an asymptotically δ−optimal detector.
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Asymptotic deviation detection

µ̂n ∼ the empirical distribution.

The minimax asymptotic N-P criterion. [Zeitouni et al., 1991]

sup
Ω

inf
P2∈P2

IP2(Ω) s.t. inf
P1∈P1

JP1(Ω) ≥ η,

where

IP2(Ω) = lim
n→∞

−1

n
logPn

2 (µ̂n ∈ Ω1(n)),

JP1(Ω) = lim
n→∞

−1

n
logPn

1 (µ̂n ∈ Ω2(n)).

Ω = {(Ω1(n),Ω2(n)), n ≥ 1} in which Ω1(n) and Ω2(n) are partitions of
all n-sample empirical distributions.
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Asymptotic deviation detection

1 When P1 and P2 each contains only single continuous distribution,
[Zeitouni et al., IEEE Trans IT 1991] provides an δ−optimal detector.

2 When P1 represents moment restrictions, [Kitamura, 2001]
demonstrated that δ−optimality holds for the empirical likelihood
ratio test.

3 In our problem,
P1 := {P ∈ P : dL(P,P0) ≤ λ1},P2 := {P ∈ P : dL(P,P0) ≥ λ2}.

Some definitions:

1 For any set Γ ⊂ P, its δ−smooth set is,

Γδ := ∪µ∈ΓB(µ, δ).

2 For sets Γ1, Γ2 ⊆ P, we will write

inf
γ1∈Γ1,γ2∈Γ2

dKL(γ1, γ2) = dKL(Γ1, Γ2)

.
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Theorem 1.

For any given δ > 0, detector

Λ2(n) = Λ2 := {µ : dKL(B̄(µ, 2δ),P1) ≥ η}δ,Λ1 := P/Λ2

is δ−optimal for the deviation detection problem, i.e.,

1 infP1∈P1 J
P1(Λ) ≥ η.

2 infP2∈P2 I
P2(Λ) ≥ dKL(Λ1,P2) := e(η, δ).

3 Λ is δ-optimal, i.e., if Ω is a test s.t.

inf
P1∈P1

JP1(Ω6δ) ≥ η,

then,

inf
P2∈P2

IP2(Ωδ) ≤ e(η, δ).
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Future Work

Simplify the optimal detector to be a generalized empirical likelihood ratio
test (δ = 0 in Theorem 1.):

Λ2(n) = Λ2 := {µ : dKL(µ,P1) ≥ η}, Λ1 := P/Λ2.
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Thanks
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