

1. Introduction

- Phonetic variability is found to be detrimental in emotional speech processing, which is why phonetic features have been rarely used for speech based emotion recognition.
- Approaches to mitigate the variability involve:
 - > functionals
 - Iexical normalization
 - phone-specific features or models
- It is also found that some phones are emotionally discriminative.
 - > e.g. features extracted from vowels are more helpful for emotion classification than those from consonants [11].
- Investigation in this study involves:
 - > Direct use of phonetic features, i.e. the PLLR features, for speech-based emotion prediction
 - > Exploitation of discriminative nature of phones using a Staircase Regression (SR) framework

2. Phone Log-likelihood Ratio (PLLR) Features

Given a phone decoder with M phones, each of which has been modelled by one Hidden Markov Model (HMM) with S states, the posterior probability for each state s (1 < s < S) of each phoneme model m (1 < m < M) at each frame t is denoted as $p_{t,s}(m)$. Then the posterior probabilities of each phone are summed across all states before calculating the PLLR features [24]:

$$p_t(m) = \sum_{\forall s} p_{t,s}(m)$$
$$PLLR_t(m) = \log \frac{p_t(m)}{\frac{1}{(M-1)} \sum_{\forall j \neq m} p_t(j)}$$

- The ratio $PLLR_t(m)$ provides a probabilistic measure for the presence of phoneme *m*.
- In the emotion prediction context, PLLR features
- 1. provide an indication of the most relevant phone for a given frame (allowing phone-specific modelling)
- 2. provide a kind of 'positioning' of the current frame among all phones.

A PLLR and Multi-stage Staircase Regression Framework for Speech-based Emotion Prediction

Zhaocheng(David) Huang^{1,2}, Julien Epps^{1,2}

¹ The School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, Australia ² Data61, CSIRO, Australia

	Arousal	Valence
EGEMAPS ([5])	0.796	0.455
PLLR	0.838	0.438
EGEMAPS	0.794	0.430
PLLR	0.821	0.473
feature-level fusion	0.848	0.502
EGEMAPS	0.794	0.286
PLLR	0.846	0.508
feature-level fusion	0.860	0.463
classifier-level fusion	0.849	0.437
score-level fusion	0.861	0.500